1
|
Blawut B, Wolfe B, Premanandan C, Schuenemann G, Ludsin SA, Liu SL, Veeramachaneni DNR, Coutinho da Silva MA. Effects of activation and assisted reproduction techniques on the composition, structure, and properties of the sauger (Sander Canadensis) spermatozoa plasma membrane. Theriogenology 2023; 198:87-99. [PMID: 36566603 DOI: 10.1016/j.theriogenology.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The sperm plasma membrane is a multifunctional organelle essential to fertilization. However, assisted reproduction techniques often negatively affect this structure, resulting in reduced fertility. These reductions have been attributed to plasma membrane damage in a wide array of species, including fish. Considerable research has been conducted on the fish sperm membrane, but few have examined the effect of cryopreservation and other assisted reproduction techniques (ARTs) on not only membrane composition, but also specific characteristics (e.g., fluidity) and organization (e.g., lipid rafts). Herein, we determined the effects of three ARTs (testicular harvest, strip spawning, and cryopreservation) on the sperm plasma membrane, using Sauger (Sander canadensis) sperm as a model. To this end, a combination of fluorescent dyes (e.g., merocyanine 540, filipin III, cholera toxin subunit β), liquid chromatography - mass spectroscopy (LC-MS) analysis of membrane lipids, and membrane ultracentrifugation coupled with plate assays and immunofluorescence were used to describe and compare sperm fluidity, membrane composition, as well as lipid raft composition and distribution among sperm types. Stripped sperm became more fluid following motility activation (40% increase in highly fluid cells characterized by a 2 × increase in fluorescence) and contained lipid rafts restricted to the midpiece. Testicular harvest yielded sperm with characteristics similar to stripped sperm. By contrast, cryopreservation impacted every aspect of membrane physiology. Two cell populations, one highly fluid and the other rigid, resulted from the freeze-thaw process. Cryopreservation reduced lipid raft cholesterol content by 44% and flotilin-2 (a lipid raft marker) was partially displaced owing to a decrease in buoyancy. Unlike stripped and testicular sperm, LC-MS analysis revealed increases in oxidative damage markers, membrane destabilization, and apoptotic signaling in cryopreserved sperm. Ultrastructural analysis also revealed widespread physical damage to the membrane following freeze-thaw. Sperm motility, however, was unrelated to any measure of membrane physiology used in this study. Our results demonstrate that ARTs have the potential to substantially affect the sperm plasma membrane, but not always detrimentally. These results provide multiple potential biomarkers of sperm quality as well as insight into sources of sub-fertility resulting from use of ARTs.
Collapse
Affiliation(s)
- Bryan Blawut
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Clinical Sciences, Columbus, OH, USA
| | - Barbara Wolfe
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Chris Premanandan
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Columbus, OH, USA
| | - Gustavo Schuenemann
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Stuart A Ludsin
- The Ohio State University, Department of Ecology, Evolution and Organismal Biology, Aquatic Ecology Lab, Columbus, OH, USA
| | - Shan-Lu Liu
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Biosciences, Viruses and Emerging Pathogens Program, The Infectious Diseases Institute, Columbus, OH, USA
| | - D N Rao Veeramachaneni
- Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Fort Collins, CO, USA
| | - Marco A Coutinho da Silva
- The Ohio State University, College of Veterinary Medicine, Department of Veterinary Clinical Sciences, Columbus, OH, USA.
| |
Collapse
|
2
|
Wu L, Li L, Gao A, Ye J, Li J. Antimicrobial roles of phagocytosis in teleost fish: Phagocytic B cells vs professional phagocytes. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Differential expression of two ATPases revealed by lipid raft isolation from gills of euryhaline teleosts with different salinity preferences. Comp Biochem Physiol B Biochem Mol Biol 2021; 253:110562. [PMID: 33453387 DOI: 10.1016/j.cbpb.2021.110562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/29/2020] [Accepted: 01/10/2021] [Indexed: 12/12/2022]
Abstract
In euryhaline teleosts, Na+, K+-ATPase (NKA) and V-type H + -ATPase A (VHA A) are important ion-transporters located in cell membrane. Lipid rafts (LR) are plasma membrane microdomains enriched in cholesterol, sphingolipids, and proteins (e.g., flotillin). Flotillin is a LR-associated protein, commonly used as the LR marker. Previous mammalian studies showed that LR may play a crucial role in ion exchanges. Meanwhile, studies on mammals and rainbow trout showed that NKA were found to be present mainly in LR. However, little is known about LR in fish. Therefore, the present study aimed to investigate the involvement of branchial LR in osmoregulation of tilapia and milkfish, two euryhaline teleosts with different salinity preferences, by (i) extracting LR from the gills of euryhaline teleosts; (ii) detecting the abundance of LR marker protein (flotillin-2) and ion-transporters (NKA and VHA A) in branchial LR and non-LR of fresh water- and seawater-acclimated milkfish and tilapia. The results indicated that the protein abundance of LR marker, flotillin-2, changed with environmental salinities in branchial LR of tilapia. In addition, flotillin-2 and NKA were only found in LR in both tilapia and milkfish gills, while VHA A were mainly present in non-LR. Relative protein abundance of NKA was found to be significantly higher in gills of freshwater milkfish and seawater tilapia, while VHA A was significantly higher in gills of freshwater tilapia and milkfish. This study illustrated differential distribution and salinity-dependent expression of NKA and VHA A in cell membrane of gill tissues of euryhaline teleosts with different salinity preferences.
Collapse
|
4
|
Abstract
The hypothesis that the Golgi apparatus is capable of sorting proteins and sending them to the plasma membrane through "lipid rafts," membrane lipid domains highly enriched in glycosphingolipids, sphingomyelin, ceramide, and cholesterol, was formulated by van Meer and Simons in 1988 and came to a turning point when it was suggested that lipid rafts could be isolated thanks to their resistance to solubilization by some detergents, namely Triton X-100. An incredible number of papers have described the composition and properties of detergent-resistant membrane fractions. However, the use of this method has also raised the fiercest criticisms. In this chapter, we would like to discuss the most relevant methodological aspects related to the preparation of detergent-resistant membrane fractions, and to discuss the importance of discriminating between what is present on a cell membrane and what we can prepare from cell membranes in a laboratory tube.
Collapse
|
5
|
Brogden G, Adamek M, Proepsting MJ, Ulrich R, Naim HY, Steinhagen D. Cholesterol-rich lipid rafts play an important role in the Cyprinid herpesvirus 3 replication cycle. Vet Microbiol 2015; 179:204-12. [PMID: 26059657 PMCID: PMC7117466 DOI: 10.1016/j.vetmic.2015.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 12/24/2022]
Abstract
Sequestration of cholesterol from the cell membrane inhibits CyHV-3 entry. CyHV-3 egress requires cholesterol. Lipid composition of the CyHV-3 envelope is similar to that of CCB lipid rafts.
The Cyprinus herpesvirus 3 (CyHV-3) is a member of the new Alloherpesviridae virus family in the Herpesvirales order. CyHV-3 has been implicated in a large number of disease outbreaks in carp populations causing up to 100% mortality. The aim of this study was to investigate the requirement of cholesterol-rich lipid rafts in CyHV-3 entry and replication in carp cells. Plasma membrane cholesterol was depleted from common carp brain (CCB) cells with methyl-β-cyclodextrin (MβCD). Treated and non-treated cells were infected with CyHV-3 and virus binding and infection parameters were assessed using RT-qPCR, immunocytochemistry and virus titration. The effect of cholesterol reduction severely stunted virus entry in vitro, however after cholesterol replenishment virus entry and subsequent replication rates were similar to the control infection. Furthermore, cholesterol depletion did not significantly influence virus binding and the subsequent post-entry replication stage, however had an impact on virus egress. Comparative analysis of the lipid compositions of CyHV-3 and CCB membrane fractions revealed strong similarities between the lipid composition of the CyHV-3 and CCB lipid rafts. The results presented here show that cholesterol-rich lipid rafts are important for the CyHV-3 replication cycle especially during entry and egress.
Collapse
Affiliation(s)
- Graham Brogden
- Fish Disease Research Unit, University of Veterinary Medicine Hanover, Germany
| | - Mikołaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hanover, Germany
| | - Marcus J Proepsting
- Fish Disease Research Unit, University of Veterinary Medicine Hanover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine Hanover, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hanover, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, University of Veterinary Medicine Hanover, Germany.
| |
Collapse
|
6
|
Cortes HD, Lillico DME, Zwozdesky MA, Pemberton JG, O'Brien A, Montgomery BCS, Wiersma L, Chang JP, Stafford JL. Induction of phagocytosis and intracellular signaling by an inhibitory channel catfish leukocyte immune-type receptor: evidence for immunoregulatory receptor functional plasticity in teleosts. J Innate Immun 2014; 6:435-55. [PMID: 24504017 DOI: 10.1159/000356963] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 11/01/2013] [Indexed: 12/21/2022] Open
Abstract
Immunoregulatory receptors are categorized as stimulatory or inhibitory based on their engagement of unique intracellular signaling networks. These proteins also display functional plasticity, which adds versatility to the control of innate immunity. Here we demonstrate that an inhibitory catfish leukocyte immune-type receptor (IpLITR) also displays stimulatory capabilities in a representative myeloid cell model. Previously, the receptor IpLITR 1.1b was shown to inhibit natural killer cell-mediated cytotoxicity. Here we expressed IpLITR 1.1b in rat basophilic leukemia-2H3 cells and monitored intracellular signaling and functional responses. Although IpLITR 1.1b did not stimulate cytokine secretion, activation of this receptor unexpectedly induced phagocytosis as well as extracellular signal-related kinase 1/2- and protein kinase B (Akt)-dependent signal transduction. This novel IpLITR 1.1b-mediated response was independent of an association with the FcRγ chain and was likely due to phosphotyrosine-dependent adaptors associating with prototypical signaling motifs within the distal region of its cytoplasmic tail. Furthermore, compared to a stimulatory IpLITR, IpLITR 1.1b displayed temporal differences in the induction of intracellular signaling, and IpLITR 1.1b-mediated phagocytosis had reduced sensitivity to EDTA and cytochalasin D. Overall, this is the first demonstration of functional plasticity for teleost LITRs, a process likely important for the fine-tuning of conserved innate defenses.
Collapse
Affiliation(s)
- Herman D Cortes
- Department of Biological Sciences, University of Alberta, Edmonton, Alta., Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Brogden G, Propsting M, Adamek M, Naim HY, Steinhagen D. Isolation and analysis of membrane lipids and lipid rafts in common carp (Cyprinus carpio L.). Comp Biochem Physiol B Biochem Mol Biol 2013; 169:9-15. [PMID: 24326265 DOI: 10.1016/j.cbpb.2013.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 12/19/2022]
Abstract
Cell membranes act as an interface between the interior of the cell and the exterior environment and facilitate a range of essential functions including cell signalling, cell structure, nutrient uptake and protection. It is composed of a lipid bilayer with integrated proteins, and the inner leaflet of the lipid bilayer comprises of liquid ordered (Lo) and liquid disordered (Ld) domains. Lo microdomains, also named as lipid rafts are enriched in cholesterol, sphingomyelin and certain types of proteins, which facilitate cell signalling and nutrient uptake. Lipid rafts have been extensively researched in mammals and the presence of functional lipid rafts was recently demonstrated in goldfish, but there is currently very little knowledge about their composition and function in fish. Therefore a protocol was established for the analysis of lipid rafts and membranous lipids in common carp (Cyprinus carpio L.) tissues. Twelve lipids were identified and analysed in the Ld domain of the membrane with the most predominant lipids found in all tissues being; triglycerides, cholesterol, phosphoethanolamine and phosphatidylcholine. Four lipids were identified in lipid rafts in all tissues analysed, triglycerides (33-62%) always found in the highest concentration followed by cholesterol (24-32%), phosphatidylcholine and sphingomyelin. Isolation of lipid rafts was confirmed by identifying the presence of the lipid raft associated protein flotillin, present at higher concentrations in the detergent resistant fraction. The data provided here build a lipid library of important carp tissues as a baseline for further studies into virus entry, protein trafficking or environmental stress analysis.
Collapse
Affiliation(s)
- Graham Brogden
- Fish Disease Research Unit, Institute of Parasitology, University of Veterinary Medicine, Bünteweg 17, 30599 Hannover, Germany
| | - Marcus Propsting
- Fish Disease Research Unit, Institute of Parasitology, University of Veterinary Medicine, Bünteweg 17, 30599 Hannover, Germany; Department of Physiological Chemistry, University of Veterinary Medicine, Bünteweg 17, 30599 Hannover, Germany
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute of Parasitology, University of Veterinary Medicine, Bünteweg 17, 30599 Hannover, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine, Bünteweg 17, 30599 Hannover, Germany
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute of Parasitology, University of Veterinary Medicine, Bünteweg 17, 30599 Hannover, Germany.
| |
Collapse
|