1
|
Leseigneur C, Buchrieser C. Modelling Legionnaires' disease: Lessons learned from invertebrate and vertebrate animal models. Eur J Cell Biol 2023; 102:151369. [PMID: 37926040 DOI: 10.1016/j.ejcb.2023.151369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
The study of virulence of Legionella pneumophila and its interactions with its hosts has been predominantly conducted in cellulo in the past decades. Although easy to implement and allowing the dissection of molecular pathways underlying host-pathogen interactions, these cellular models fail to provide conditions of the complex environments encountered by the bacteria during the infection of multicellular organisms. To improve our understanding of human infection, several animal models have been developed. This review provides an overview of the invertebrate and vertebrate models that have been established to study L. pneumophila infection and that are alternatives to the classical mouse model, which does not recall human infection with L. pneumophila well. Finally we provide insight in the main contributions made by these models along with their pros and cons.
Collapse
Affiliation(s)
- Clarisse Leseigneur
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires, 75724 Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires, 75724 Paris, France.
| |
Collapse
|
2
|
Touré H, Galindo LA, Lagune M, Glatigny S, Waterhouse RM, Guénal I, Herrmann JL, Girard-Misguich F, Szuplewski S. Mycobacterium abscessus resists the innate cellular response by surviving cell lysis of infected phagocytes. PLoS Pathog 2023; 19:e1011257. [PMID: 36972320 PMCID: PMC10079227 DOI: 10.1371/journal.ppat.1011257] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/06/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
Mycobacterium abscessus is the most pathogenic species among the predominantly saprophytic fast-growing mycobacteria. This opportunistic human pathogen causes severe infections that are difficult to eradicate. Its ability to survive within the host was described mainly with the rough (R) form of M. abscessus, which is lethal in several animal models. This R form is not present at the very beginning of the disease but appears during the progression and the exacerbation of the mycobacterial infection, by transition from a smooth (S) form. However, we do not know how the S form of M. abscessus colonizes and infects the host to then multiply and cause the disease. In this work, we were able to show the hypersensitivity of fruit flies, Drosophila melanogaster, to intrathoracic infections by the S and R forms of M. abscessus. This allowed us to unravel how the S form resists the innate immune response developed by the fly, both the antimicrobial peptides- and cellular-dependent immune responses. We demonstrate that intracellular M. abscessus was not killed within the infected phagocytic cells, by resisting lysis and caspase-dependent apoptotic cell death of Drosophila infected phagocytes. In mice, in a similar manner, intra-macrophage M. abscessus was not killed when M. abscessus-infected macrophages were lysed by autologous natural killer cells. These results demonstrate the propensity of the S form of M. abscessus to resist the host’s innate responses to colonize and multiply within the host.
Collapse
Affiliation(s)
- Hamadoun Touré
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Lee Ann Galindo
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Marion Lagune
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Simon Glatigny
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and the Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-Le-Bretonneux, France
- * E-mail: (FGM); (SS)
| | | |
Collapse
|
3
|
Kobler JM, Rodriguez Jimenez FJ, Petcu I, Grunwald Kadow IC. Immune Receptor Signaling and the Mushroom Body Mediate Post-ingestion Pathogen Avoidance. Curr Biol 2020; 30:4693-4709.e3. [DOI: 10.1016/j.cub.2020.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
|
4
|
Wang Z, Li C. Xenophagy in innate immunity: A battle between host and pathogen. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103693. [PMID: 32243873 DOI: 10.1016/j.dci.2020.103693] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Autophagy is a fundamental bulk intracellular degradation and recycling process that directly eliminates intracellular microorganisms through "xenophagy" in various types of cells, especially in macrophages. Meanwhile, bacteria have evolved strategies and cellular self-defense mechanisms to prevent autophagosomal degradation and even attack the immune system of host. The lack of knowledge about the roles of autophagy in innate immunity severely limits our understanding of host defensive system and the development of farmed industry consisting of aquaculture. Increasing evidence in recent decades has shown the importance of autophagy. This review focuses on the triggering of xenophagy, targeting of invading pathogens to autophagosomes and elimination in the autophagolysosomes during pathogen infection. How the pathogen can escape from the xenophagy pathway was also discussed. Overall, we aim to reduce diseases and improve industrial production in aquaculture by providing theoretical and technical guidance on xenophagy.
Collapse
Affiliation(s)
- Zhenhui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
5
|
González-González A, Wayne ML. Immunopathology and immune homeostasis during viral infection in insects. Adv Virus Res 2020; 107:285-314. [PMID: 32711732 DOI: 10.1016/bs.aivir.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Organisms clear infections by mounting an immune response that is normally turned off once the pathogens have been cleared. However, sometimes this immune response is not properly or timely arrested, resulting in the host damaging itself. This immune dysregulation may be referred to as immunopathology. While our knowledge of immune and metabolic pathways in insects, particularly in response to viral infections, is growing, little is known about the mechanisms that regulate this immune response and hence little is known about immunopathology in this important and diverse group of organisms. In this chapter we focus both on documenting the molecular mechanisms described involved in restoring immune homeostasis in insects after viral infections and on identifying potential mechanisms for future investigation. We argue that learning about the immunopathological consequences of an improperly regulated immune response in insects will benefit both insect and human health.
Collapse
Affiliation(s)
| | - Marta L Wayne
- Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Kong M, Zuo H, Zhu F, Hu Z, Chen L, Yang Y, Lv P, Yao Q, Chen K. The interaction between baculoviruses and their insect hosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:114-123. [PMID: 29408049 DOI: 10.1016/j.dci.2018.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
Baculoviruses are double-stranded circular DNA viruses that infect arthropods via the midgut. Because of their superiority as eukaryotic expression systems and their importance as biopesticides, extensive research on the functions of baculovirus genes as well as on the host response to baculovirus infection has been carried out, including transcriptomic and proteomic analyses of the midgut. The morphological and cellular changes caused by baculovirus infection are also important to better understand the infection pathway. Thanks to these previous studies, we now have a clearer picture of the mechanisms of action of the virus and of host immunity. In this paper, we systematically reviewed studies on the interaction between baculoviruses and their insect hosts. By better understanding these interactions, baculoviruses can be developed for use as more efficient biopesticides to improve agricultural development in the future.
Collapse
Affiliation(s)
- Ming Kong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huan Zuo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
7
|
Saray P, Roytrakul S, Pangeson T, Phetrungnapha A. Comparative proteomic analysis of hepatopancreas in Macrobrachium rosenbergii responded to Poly (I:C). FISH & SHELLFISH IMMUNOLOGY 2018; 75:164-171. [PMID: 29427716 DOI: 10.1016/j.fsi.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/26/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Gel-enhanced liquid chromatography coupled with tandem mass spectrometry (GeLC-MS/MS) was used to analyze the proteome of Macrobrachium rosenbergii hepatopancreas responded to Poly (I:C). GeLC-MS/MS analysis identified 515 differentially-expressed proteins with ≥1.5 and ≤ -0.5 log2 fold change. Of these, 195 differentially-expressed proteins were significantly matched to known proteins in the database, of which 102 proteins were up-regulated and 93 proteins were down-regulated. These proteins were classified into 21 categories, i.e. metabolic process, oxidative stress response, signaling, transcription, translation, cell cycle, transport, etc. Several immune factors were up-regulated upon Poly (I:C) injection. Protein-protein interaction network analysis of these immune factors identified three major protein clusters including RNAi, stress responses, and Toll pathway-proPO system, implying that Poly (I:C) activates immune responses in prawn through several mechanisms.
Collapse
Affiliation(s)
- Pheng Saray
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Tanapat Pangeson
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand; Department of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Amnat Phetrungnapha
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
8
|
Haller S, Franchet A, Hakkim A, Chen J, Drenkard E, Yu S, Schirmeier S, Li Z, Martins N, Ausubel FM, Liégeois S, Ferrandon D. Quorum-sensing regulator RhlR but not its autoinducer RhlI enables Pseudomonas to evade opsonization. EMBO Rep 2018. [PMID: 29523648 DOI: 10.15252/embr.201744880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
When Drosophila melanogaster feeds on Pseudomonas aeruginosa, some bacteria cross the intestinal barrier and eventually proliferate in the hemocoel. This process is limited by hemocytes through phagocytosis. P. aeruginosa requires the quorum-sensing regulator RhlR to elude the cellular immune response of the fly. RhlI synthesizes the autoinducer signal that activates RhlR. Here, we show that rhlI mutants are unexpectedly more virulent than rhlR mutants, both in fly and in nematode intestinal infection models, suggesting that RhlR has RhlI-independent functions. We also report that RhlR protects P. aeruginosa from opsonization mediated by the Drosophila thioester-containing protein 4 (Tep4). RhlR mutant bacteria show higher levels of Tep4-mediated opsonization, as compared to rhlI mutants, which prevents lethal bacteremia in the Drosophila hemocoel. In contrast, in a septic model of infection, in which bacteria are introduced directly into the hemocoel, Tep4 mutant flies are more resistant to wild-type P. aeruginosa, but not to the rhlR mutant. Thus, depending on the infection route, the Tep4 opsonin can either be protective or detrimental to host defense.
Collapse
Affiliation(s)
- Samantha Haller
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France
| | - Adrien Franchet
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France
| | - Abdul Hakkim
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Jing Chen
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Eliana Drenkard
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Shen Yu
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Nelson Martins
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France
| | - Frederick M Ausubel
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel Liégeois
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France
| | - Dominique Ferrandon
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France .,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Zug R, Hammerstein P. Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front Microbiol 2015; 6:1201. [PMID: 26579107 PMCID: PMC4621438 DOI: 10.3389/fmicb.2015.01201] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/15/2015] [Indexed: 01/06/2023] Open
Abstract
Wolbachia are intracellular bacteria that infect a vast range of arthropod species, making them one of the most prevalent endosymbionts in the world. Wolbachia's stunning evolutionary success is mostly due to their reproductive parasitism but also to mutualistic effects such as increased host fecundity or protection against pathogens. However, the mechanisms underlying Wolbachia phenotypes, both parasitic and mutualistic, are only poorly understood. Moreover, it is unclear how the insect immune system is involved in these phenotypes and why it is not more successful in eliminating the bacteria. Here we argue that reactive oxygen species (ROS) are likely to be key in elucidating these issues. ROS are essential players in the insect immune system, and Wolbachia infection can affect ROS levels in the host. Based on recent findings, we elaborate a hypothesis that considers the different effects of Wolbachia on the oxidative environment in novel vs. native hosts. We propose that newly introduced Wolbachia trigger an immune response and cause oxidative stress, whereas in coevolved symbioses, infection is not associated with oxidative stress, but rather with restored redox homeostasis. Redox homeostasis can be restored in different ways, depending on whether Wolbachia or the host is in charge. This hypothesis offers a mechanistic explanation for several of the observed Wolbachia phenotypes.
Collapse
Affiliation(s)
- Roman Zug
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
10
|
Abstract
UNLABELLED Drosophila C virus (DCV) is a positive-sense RNA virus belonging to the Dicistroviridae family. This natural pathogen of the model organism Drosophila melanogaster is commonly used to investigate antiviral host defense in flies, which involves both RNA interference and inducible responses. Although lethality is used routinely as a readout for the efficiency of the antiviral immune response in these studies, virus-induced pathologies in flies still are poorly understood. Here, we characterize the pathogenesis associated with systemic DCV infection. Comparison of the transcriptome of flies infected with DCV or two other positive-sense RNA viruses, Flock House virus and Sindbis virus, reveals that DCV infection, unlike those of the other two viruses, represses the expression of a large number of genes. Several of these genes are expressed specifically in the midgut and also are repressed by starvation. We show that systemic DCV infection triggers a nutritional stress in Drosophila which results from intestinal obstruction with the accumulation of peritrophic matrix at the entry of the midgut and the accumulation of the food ingested in the crop, a blind muscular food storage organ. The related virus cricket paralysis virus (CrPV), which efficiently grows in Drosophila, does not trigger this pathology. We show that DCV, but not CrPV, infects the smooth muscles surrounding the crop, causing extensive cytopathology and strongly reducing the rate of contractions. We conclude that the pathogenesis associated with systemic DCV infection results from the tropism of the virus for an important organ within the foregut of dipteran insects, the crop. IMPORTANCE DCV is one of the few identified natural viral pathogens affecting the model organism Drosophila melanogaster. As such, it is an important virus for the deciphering of host-virus interactions in insects. We characterize here the pathogenesis associated with DCV infection in flies and show that it results from the tropism of the virus for an essential but poorly characterized organ in the digestive tract, the crop. Our results may have relevance for other members of the Dicistroviridae, some of which are pathogenic to beneficial or pest insect species.
Collapse
|
11
|
Sicard M, Dittmer J, Grève P, Bouchon D, Braquart-Varnier C. A host as an ecosystem:Wolbachiacoping with environmental constraints. Environ Microbiol 2014; 16:3583-607. [DOI: 10.1111/1462-2920.12573] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/17/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Mathieu Sicard
- Institut des Sciences de l'Évolution; UMR CNRS 5554; Équipe Génomique de l'adaptation; Université Montpellier 2; Place Eugène Bataillon Montpellier Cedex 05 F-34095 France
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| | - Jessica Dittmer
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| | - Pierre Grève
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| | - Didier Bouchon
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| | - Christine Braquart-Varnier
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| |
Collapse
|
12
|
Abstract
The route of infection can profoundly affect both the progression and outcome of disease. We investigated differences in Drosophila melanogaster defense against infection after bacterial inoculation into two sites--the abdomen and the thorax. Thorax inoculation results in increased bacterial proliferation and causes high mortality within the first few days of infection. In contrast, abdomen inoculation results in minimal mortality and lower bacterial loads than thorax inoculation. Inoculation into either site causes systemic infection. Differences in mortality and bacterial load are due to injury of the thorax and can be recapitulated by abdominal inoculation coupled with aseptic wounding of the thorax. This altered resistance appears to be independent of classical immune pathways and opens new avenues of research on the role of injury during defense against infection.
Collapse
|
13
|
Shiratsuchi A, Shimamoto N, Nitta M, Tuan TQ, Firdausi A, Gawasawa M, Yamamoto K, Ishihama A, Nakanishi Y. Role for σ38 in prolonged survival of Escherichia coli in Drosophila melanogaster. THE JOURNAL OF IMMUNOLOGY 2013; 192:666-75. [PMID: 24337747 DOI: 10.4049/jimmunol.1300968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacteria adapt themselves to host environments by altering the pattern of gene expression. The promoter-recognizing subunit σ of bacterial RNA polymerase plays a major role in the selection of genes to be transcribed. Among seven σ factors of Escherichia coli, σ(38) is responsible for the transcription of genes in the stationary phase and under stressful conditions. We found a transient increase of σ(38) when E. coli was injected into the hemocoel of Drosophila melanogaster. The loss of σ(38) made E. coli rapidly eliminated in flies, and flies infected with σ(38)-lacking E. coli stayed alive longer than those infected with the parental strain. This was also observed in fly lines defective in humoral immune responses, but not in flies in which phagocytosis was impaired. The lack of σ(38) did not influence the susceptibility of E. coli to phagocytosis, but made them vulnerable to killing after engulfment. The changes caused by the loss of σ(38) were recovered by the forced expression of σ(38)-encoding rpoS as well as σ(38)-regulated katE and katG coding for enzymes that detoxify reactive oxygen species. These results collectively suggested that σ(38) contributes to the prolonged survival of E. coli in Drosophila by inducing the production of enzymes that protect bacteria from killing in phagocytes. Considering the similarity in the mechanism of innate immunity against invading bacteria between fruit flies and humans, the products of these genes could be new targets for the development of more effective antibacterial remedies.
Collapse
Affiliation(s)
- Akiko Shiratsuchi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|