1
|
El Shazely B, Rolff J. A Trade-Off Between Antimicrobial Peptide Resistance and Sensitivity to Host Immune Effectors in Staphylococcus aureus In Vivo. Evol Appl 2025; 18:e70068. [PMID: 39925620 PMCID: PMC11802329 DOI: 10.1111/eva.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/08/2024] [Accepted: 12/16/2024] [Indexed: 02/11/2025] Open
Abstract
Antimicrobial peptides (AMPs) are essential immune effectors of multicellular organisms. Bacteria can evolve resistance to AMPs. Surprisingly, when used to challenge the yellow mealworm beetle, Tenebrio molitor, Staphylococcus aureus resistant to an abundant AMP (tenecin 1) of the very same host species did not increase host mortality or bacterial load compared to infections with wild-type S. aureus. A possible explanation is that antimicrobial resistance is costly due to the collaterally increased sensitivity of AMP-resistant strains to other immune effectors. Here, we study the sensitivity of a group of AMP-resistant S. aureus strains (resistant to tenecin 1 or a combination of tenecin 1 + 2) to other immune effectors such as phenoloxidase and other AMPs in vivo. Using RNAi-based knockdown, we investigate S. aureus survival in insect hosts lacking selected immune effectors. We find that all except one AMP-resistant strain displayed collateral sensitivity toward phenoloxidase. Some AMP-resistant strains show sensitivity to components of the yellow mealworm beetle AMP defense cocktail. Our findings are consistent with the idea that resistance to AMPs does not translate into changes in virulence because it is balanced by the collaterally increased sensitivity to other host immune effectors. AMP resistance fails to provide a net survival advantage to S. aureus in a host environment that is dominated by AMPs.
Collapse
Affiliation(s)
- Baydaa El Shazely
- Institut für Biologie, Evolutionary BiologyFreie Universität BerlinBerlinGermany
- Zoology Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
| | - Jens Rolff
- Institut für Biologie, Evolutionary BiologyFreie Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| |
Collapse
|
2
|
Pedonese F, Fratini F, Copelotti E, Marconi F, Carrese R, Mancini S. Behaviour of Staphylococcus aureus in the Rearing Substrate of Tenebrio molitor Larvae. Vet Sci 2023; 10:549. [PMID: 37756071 PMCID: PMC10534670 DOI: 10.3390/vetsci10090549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Tenebrio molitor (mealworm) is one of the most promising insect species to produce sustainable feed and food with high nutritional value. Insects may harbour microorganisms both in the gut and on the exoskeleton originating from the rearing environment. Staphylococcus aureus is a pathogenic microorganism frequently involved in food poisoning due to its enterotoxin production. This study aimed to evaluate the S. aureus growth and enterotoxins production following an experimental inoculation into the T. molitor rearing substrate (about 7 log CFU/g). Analyses on the substrate and larvae were performed over a testing period of seven days. The microbial population dynamics were also evaluated through total viable count and lactic acid bacteria count. The effects of fasting, washing, and cooking on the microbial loads of mealworms were evaluated. The results highlighted that mealworms and substrates can maintain their microbial loads of S. aureus over the tested period. Moreover, fasting and washing were generally not able to significantly reduce (p-value > 0.05) S. aureus count in mealworms. On the other hand, cooking significantly reduced (p-value < 0.001) the microbial load in almost all cases. No production of enterotoxins was revealed during the trial. Therefore, microbiological risks can be reduced by a wise choice of substrate, appropriate control measures, and thermal treatment of larvae.
Collapse
Affiliation(s)
- Francesca Pedonese
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (E.C.); (F.M.); (S.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Filippo Fratini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (E.C.); (F.M.); (S.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Emma Copelotti
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (E.C.); (F.M.); (S.M.)
| | - Francesca Marconi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (E.C.); (F.M.); (S.M.)
| | - Roberto Carrese
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (E.C.); (F.M.); (S.M.)
| | - Simone Mancini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (E.C.); (F.M.); (S.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
3
|
Ribeiro IMM, de Sousa VC, Melo ECS, Carvalho RDCVD, Santos MDSD, Neto JADON, Melo DSD, Teixeira LSDA, Citó AMDGL, Moura AKS, Arcanjo DDR, Carvalho FADA, Alves MMDM, Mendonça ILD. Antileishmania and immunomodulatory potential of cashew nut shell liquid and cardanol. Toxicol In Vitro 2023; 87:105524. [PMID: 36435415 DOI: 10.1016/j.tiv.2022.105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Conventional treatments for leishmaniasis have caused serious adverse effects, poor tolerance, development of resistant strains. Natural products have been investigated as potential therapeutic alternatives. The cashew nut shell liquid (CNSL) is a natural source of phenolic compounds with several biological activities, where cardanol (CN) is considered one of the most important and promising compounds. This study aimed to evaluate antileishmanial, cytotoxic and immunomodulatory activities of CNSL and CN. Both showed antileishmanial potential, with IC50 for CNSL and CN against Leishmania infantum: 148.12 and 56.74 μg/mL; against Leishmania braziliensis: 85.71 and 64.28 μg/mL; against Leishmania major: 153.56 and 122.31 μg/mL, respectively. The mean cytotoxic concentrations (CC50) of CNSL and CN were 37.51 and 31.44 μg/mL, respectively. CNSL and CN significantly reduced the percentage of infected macrophages, with a selectivity index (SI) >20 for CN. CNSL and cardanol caused an increase in phagocytic capacity and lysosomal volume. Survival rates of Zophobas morio larvae at doses of 3; 30 and 300 mg/kg were: 85%, 75% and 60% in contact with CNSL and 85%, 60% and 40% in contact with CN, respectively. There was a significant difference between the survival curves of larvae when treated with CN, demonstrating a significant acute toxicity for this substance. Additional investigations are needed to evaluate these substances in the in vivo experimental infection model.
Collapse
Affiliation(s)
- Iuliana Marjory Martins Ribeiro
- Programa de Pós-Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Valéria Carlos de Sousa
- Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | | | | | | | | | - Danielly Silva de Melo
- Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | | | | | | | - Daniel Dias Rufino Arcanjo
- Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Teresina, Piauí, Brazil; Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina, Piauí, Brazil.
| | | | - Michel Muálem de Moraes Alves
- Programa de Pós-Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil; Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Teresina, Piauí, Brazil; Departamento de Morfofisiologia Veterinária, Universidade Federal do Piauí, Teresina, Piauí, Brazil.
| | - Ivete Lopes de Mendonça
- Programa de Pós-Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil; Departamento de Clínica e Cirurgia Veterinária, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
4
|
Cesaro C, Mannozzi C, Lepre A, Ferrocino I, Belleggia L, Corsi L, Ruschioni S, Isidoro N, Riolo P, Petruzzelli A, Savelli D, Milanović V, Cardinali F, Garofalo C, Cocolin L, Aquilanti L, Osimani A. Staphylococcus aureus artificially inoculated in mealworm larvae rearing chain for human consumption: Long-term investigation into survival and toxin production. Food Res Int 2022; 162:112083. [DOI: 10.1016/j.foodres.2022.112083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2022]
|
5
|
Petronio Petronio G, Pietrangelo L, Cutuli MA, Magnifico I, Venditti N, Guarnieri A, Abate GA, Yewhalaw D, Davinelli S, Di Marco R. Emerging Evidence on Tenebrio molitor Immunity: A Focus on Gene Expression Involved in Microbial Infection for Host-Pathogen Interaction Studies. Microorganisms 2022; 10:1983. [PMID: 36296259 PMCID: PMC9611967 DOI: 10.3390/microorganisms10101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 08/13/2023] Open
Abstract
In recent years, the scientific community's interest in T. molitor as an insect model to investigate immunity and host-pathogen interactions has considerably increased. The reasons for this growing interest could be explained by the peculiar features of this beetle, which offers various advantages compared to other invertebrates models commonly used in laboratory studies. Thus, this review aimed at providing a broad view of the T. molitor immune system in light of the new scientific evidence on the developmental/tissue-specific gene expression studies related to microbial infection. In addition to the well-known cellular component and humoral response process, several studies investigating the factors associated with T. molitor immune response or deepening of those already known have been reported. However, various aspects remain still less understood, namely the possible crosstalk between the immune deficiency protein and Toll pathways and the role exerted by T. molitor apolipoprotein III in the expression of the antimicrobial peptides. Therefore, further research is required for T. molitor to be recommended as an alternative insect model for pathogen-host interaction and immunity studies.
Collapse
Affiliation(s)
- Giulio Petronio Petronio
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Marco Alfio Cutuli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Getnet Atinafu Abate
- Department of Biology, College of Natural Sciences, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma P.O. Box 307, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Sergio Davinelli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| |
Collapse
|
6
|
Nones S, Simões F, Trindade CS, Matos J, Sousa E. Microbiome Associated with the Mycangia of Female and Male Adults of the Ambrosia Beetle Platypus cylindrus Fab. (Coleoptera: Curculionidae). INSECTS 2021; 12:881. [PMID: 34680650 PMCID: PMC8540956 DOI: 10.3390/insects12100881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023]
Abstract
The ambrosia beetle Platypus cylindrus Fab. (Coleoptera: Curculionidae) is a major cork oak pest in Portugal. Female and male beetles have different roles in host tree colonization and are both equipped with prothoracic mycangia for fungal transportation. Despite a known beneficial role of bacteria in ambrosia beetles, information on bacterial composition associated with prothoracic mycangia structures is scarce. Bacterial community from mycangia of P. cylindrus male and female beetles collected from cork oak galleries was investigated by means of 16S metagenomics. Mycangia anatomical structure was also explored with histological techniques and X-ray computed microtomography to highlight evidence supporting biological sexual dimorphism. A bacterial community with highly diverse bacterial taxa with low abundances at the genus level was revealed. Lactobacillales, Leptotrichia, Neisseria, Rothia, and Sphingomonadaceae were significantly more abundant in males, while Acinetobacter, Chitinophagaceae, Enterobacteriaceae, Erwiniaceae, Microbacteriaceae, and Pseudoclavibacter were more abundant in females. Additionally, a core bacteriome of five genera was shared by both sexes. Histological examination revealed visible connections linking external and internal tissues in females, but none in males. Overall, these results provide the first insights into sexual differentiation for bacteria in a Platypodinae beetle species, identifying key patterns of bacteria distribution in the context of beetle ecology and functional behavior.
Collapse
Affiliation(s)
- Stefano Nones
- Agrarian and Forestry Systems and Vegetal Health Unit, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Quinta do Marquês, 2780-159 Oeiras, Portugal; (C.S.T.); (E.S.)
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Fernanda Simões
- Biotechnology and Genetic Resources Unit, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Quinta do Marquês, 2780-159 Oeiras, Portugal; (F.S.); (J.M.)
| | - Cândida Sofia Trindade
- Agrarian and Forestry Systems and Vegetal Health Unit, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Quinta do Marquês, 2780-159 Oeiras, Portugal; (C.S.T.); (E.S.)
| | - José Matos
- Biotechnology and Genetic Resources Unit, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Quinta do Marquês, 2780-159 Oeiras, Portugal; (F.S.); (J.M.)
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Edmundo Sousa
- Agrarian and Forestry Systems and Vegetal Health Unit, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Quinta do Marquês, 2780-159 Oeiras, Portugal; (C.S.T.); (E.S.)
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Quinta do Marquês, 2780-157 Oeiras, Portugal
| |
Collapse
|
7
|
Multi-functionalized nanocarriers targeting bacterial reservoirs to overcome challenges of multi drug-resistance. ACTA ACUST UNITED AC 2020; 28:319-332. [PMID: 32193748 DOI: 10.1007/s40199-020-00337-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Infectious diseases associated with intracellular bacteria such as Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis are important public health concern. Emergence of multi and extensively drug-resistant bacterial strains have made it even more obstinate to offset such infections. Bacteria residing within intracellular compartments provide additional barriers to effective treatment. METHOD Information provided in this review has been collected by accessing various electronic databases including Google scholar, Web of science, Scopus, and Nature index. Search was performed using keywords nanoparticles, intracellular targeting, multidrug resistance, Staphylococcus aureus; Salmonella typhimurium; Mycobacterium tuberculosis. Information gathered was categorized into three major sections as 'Intracellular targeting of Staphylococcus aureus, Intracellular targeting of Salmonella typhimurium and Intracellular targeting of Mycobacterium tuberculosis' using variety of nanocarrier systems. RESULTS Conventional management for infectious diseases typically comprises of long-term treatment with a combination of antibiotics, which may lead to side effects and decreased patient compliance. A wide range of multi-functionalized nanocarrier systems have been studied for delivery of drugs within cellular compartments where bacteria including Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis reside. Such carrier systems along with targeted delivery have been utilized for sustained and controlled delivery of drugs. These strategies have been found useful in overcoming the drawbacks of conventional treatments including multi-drug resistance. CONCLUSION Development of multi-functional nanocargoes encapsulating antibiotics that are proficient in targeting and releasing drug into infected reservoirs seems to be a promising strategy to circumvent the challenge of multidrug resistance. Graphical abstract.
Collapse
|
8
|
Products Derived from Buchenavia tetraphylla Leaves Have In Vitro Antioxidant Activity and Protect Tenebrio molitor Larvae against Escherichia coli-Induced Injury. Pharmaceuticals (Basel) 2020; 13:ph13030046. [PMID: 32188166 PMCID: PMC7151707 DOI: 10.3390/ph13030046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
The relevance of oxidative stress in the pathogenesis of several diseases (including inflammatory disorders) has traditionally led to the search for new sources of antioxidant compounds. In this work, we report the selection of fractions with high antioxidant action from B. tetraphylla (BT) leaf extracts. In vitro methods (DPPH and ABTS assays; determination of phenolic and flavonoid contents) were used to select products derived from B. tetraphylla with high antioxidant action. Then, the samples with the highest potentials were evaluated in a model of injury based on the inoculation of a lethal dose of heat-inactivated Escherichia coli in Tenebrio molitor larvae. Due to its higher antioxidant properties, the methanolic extract (BTME) was chosen to be fractionated using Sephadex LH-20 column-based chromatography. Two fractions from BTME (BTFC and BTFD) were the most active fractions. Pre-treatment with these fractions protected larvae of T. molitor from the stress induced by inoculation of heat-inactivated E. coli. Similarly, BTFC and BTFD increased the lifespan of larvae infected with a lethal dose of enteroaggregative E. coli 042. NMR data indicated the presence of aliphatic compounds (terpenes, fatty acids, carbohydrates) and aromatic compounds (phenolic compounds). These findings suggested that products derived from B. tetraphylla leaves are promising candidates for the development of antioxidant and anti-infective agents able to treat oxidative-related dysfunctions.
Collapse
|
9
|
El Shazely B, Yu G, Johnston PR, Rolff J. Resistance Evolution Against Antimicrobial Peptides in Staphylococcus aureus Alters Pharmacodynamics Beyond the MIC. Front Microbiol 2020; 11:103. [PMID: 32117132 PMCID: PMC7033599 DOI: 10.3389/fmicb.2020.00103] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2020] [Indexed: 12/03/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been proposed as a promising class of new antimicrobials partly because they are less susceptible to bacterial resistance evolution. This is possibly caused by their mode of action but also by their pharmacodynamic characteristics, which differ significantly from conventional antibiotics. Although pharmacodynamics of antibiotic resistant strains have been studied, such data are lacking for AMP resistant strains. Here, we investigated if the pharmacodynamics of the Gram-positive human pathogen Staphylococcous aureus evolve under antimicrobial peptide selection. Interestingly, the Hill coefficient (kappa κ) evolves together with the minimum inhibition concentration (MIC). Except for one genotype, strains harboring mutations in menF and atl, all mutants had higher kappa than the non-selected sensitive controls. Higher κ results in steeper pharmacodynamic curve and, importantly, in a narrower mutant selection window. S. aureus selected for resistance to melittin displayed cross resistant against pexiganan and had as steep pharmacodynamic curves (high κ) as pexiganan-selected lines. By contrast, the pexiganan-sensitive tenecin-selected lines displayed lower κ. Taken together, our data demonstrate that pharmacodynamic parameters are not fixed traits of particular drug/strain interactions but actually evolve under drug treatment. The contribution of factors such as κ and the maximum and minimum growth rates on the dynamics and probability of resistance evolution are open questions that require urgent attention.
Collapse
Affiliation(s)
- Baydaa El Shazely
- Evolutionary Biology, Institute for Biology, Free University of Berlin, Berlin, Germany.,Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Guozhi Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Paul R Johnston
- Evolutionary Biology, Institute for Biology, Free University of Berlin, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Free University of Berlin, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| |
Collapse
|
10
|
El Shazely B, Urbański A, Johnston PR, Rolff J. In vivo exposure of insect AMP resistant Staphylococcus aureus to an insect immune system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:60-68. [PMID: 31051236 DOI: 10.1016/j.ibmb.2019.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Antimicrobial peptides (AMPs) are important immune effectors in insects. Bacteria have a limited number of ways to resist AMPs, and AMP-resistance is often costly. Recently, it has become clear that AMP activities in vitro and in vivo differ. Although some studies have followed the in vivo survival of AMP resistant pathogens, studying a pathogen resistant to the AMPs of that particular host has never been reported. Here, we infected the mealworm beetle Tenebrio molitor with Staphylococcus aureus strains that were evolved in vitro in the presence of one or two antimicrobial peptides from T. molitor. We found that the Tenebrio immune system could clear mutant Tenecin resistant strains at least as efficiently as sensitive controls. The bacterial load of Tenecin resistant S. aureus segregated by mutation. Strains with mutations in both the pmt and rpo operons showed the highest in vivo survival and therefore showed the lowest fitness cost amongst the evolved resistance mutations. In contrast, Tenecin resistant strains with mutations in the nsa and rpo operons showed much lower survival within the hosts. Our study shows that Tenecin resistant strains are phagocytosed at a lower rate. The nsa/rpo mutants were phagocytosed at a higher rate than other Tenecin resistant S. aureus strains. The differences in resistance against AMPs and phagocytosis did not translate into changes in virulence. AMP resistance, while a prerequisite for an infection in vertebrates, does not provide a survival advantage to S. aureus in a host environment that is dominated by AMPs.
Collapse
Affiliation(s)
- Baydaa El Shazely
- Evolutionary Biology, Institute for Biology, Free University of Berlin, Berlin, Germany; Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Paul R Johnston
- Evolutionary Biology, Institute for Biology, Free University of Berlin, Berlin, Germany; Berlin Center for Genomics in Biodiversity Research, Berlin, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Free University of Berlin, Berlin, Germany; Berlin Center for Genomics in Biodiversity Research, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| |
Collapse
|
11
|
Makarova O, Rodríguez-Rojas A, Eravci M, Weise C, Dobson A, Johnston P, Rolff J. Antimicrobial defence and persistent infection in insects revisited. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0296. [PMID: 27160598 DOI: 10.1098/rstb.2015.0296] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 01/26/2023] Open
Abstract
Insects show long-lasting antimicrobial immune responses that follow the initial fast-acting cellular processes. These immune responses are discussed to provide a form of phrophylaxis and/or to serve as a safety measure against persisting infections. The duration and components of such long-lasting responses have rarely been studied in detail, a necessary prerequisite to understand their adaptive value. Here, we present a 21 day proteomic time course of the mealworm beetle Tenebrio molitor immune-challenged with heat-killed Staphylococcus aureus The most upregulated peptides are antimicrobial peptides (AMPs), many of which are still highly abundant 21 days after infection. The identified AMPs included toll and imd-mediated AMPs, a significant number of which have no known function against S. aureus or other Gram-positive bacteria. The proteome reflects the selective arena for bacterial infections. The results also corroborate the notion of synergistic interactions in vivo that are difficult to model in vitroThis article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Olga Makarova
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, Berlin 14195, Germany
| | - Alexandro Rodríguez-Rojas
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, Berlin 14195, Germany
| | - Murat Eravci
- Institute of Chemistry and Biochemistry, Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Chris Weise
- Institute of Chemistry and Biochemistry, Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Adam Dobson
- Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Paul Johnston
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, Berlin 14195, Germany Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Straße 6-8, Berlin 14195, Germany
| | - Jens Rolff
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, Berlin 14195, Germany Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstraße 6, Berlin 14195, Germany
| |
Collapse
|
12
|
Zanchi C, Johnston PR, Rolff J. Evolution of defence cocktails: Antimicrobial peptide combinations reduce mortality and persistent infection. Mol Ecol 2017; 26:5334-5343. [PMID: 28762573 DOI: 10.1111/mec.14267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 01/26/2023]
Abstract
The simultaneous expression of costly immune effectors such as multiple antimicrobial peptides is a hallmark of innate immunity of multicellular organisms, yet the adaptive advantage remains unresolved. Here, we test current hypotheses on the evolution of such defence cocktails. We use RNAi gene knock-down to explore, the effects of three highly expressed antimicrobial peptides, displaying different degrees of activity in vitro against Staphylococcus aureus, during an infection in the beetle Tenebrio molitor. We find that a defensin confers no survival benefit but reduces bacterial loads. A coleoptericin contributes to host survival without affecting bacterial loads. An attacin has no individual effect. Simultaneous knock-down of the defensin with the other AMPs results in increased mortality and elevated bacterial loads. Contrary to common expectations, the effects on host survival and bacterial load can be independent. The expression of multiple AMPs increases host survival and contributes to the control of persisting infections and tolerance. This is an emerging property that explains the adaptive benefit of defence cocktails.
Collapse
Affiliation(s)
- Caroline Zanchi
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany.,Westfälische Wilhelms-Universität Münster, Institute of Evolution and Biodiversity, Münster, Germany
| | - Paul R Johnston
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Jens Rolff
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
13
|
Rosengaus RB, Hays N, Biro C, Kemos J, Zaman M, Murray J, Gezahegn B, Smith W. Pathogen-induced maternal effects result in enhanced immune responsiveness across generations. Ecol Evol 2017; 7:2925-2935. [PMID: 28479992 PMCID: PMC5415515 DOI: 10.1002/ece3.2887] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/09/2023] Open
Abstract
Parental investment theory postulates that adults can accurately perceive cues from their surroundings, anticipate the needs of future offspring based on those cues, and selectively allocate nongenetic resources to their progeny. Such context‐dependent parental contributions can result in phenotypically variable offspring. Consistent with these predictions, we show that bacterially exposed Manduca sexta mothers oviposited significantly more variable embryos (as measured by mass, volume, hatching time, and hatching success) relative to naïve and control mothers. By using an in vivo “clearance of infection” assay, we also show that challenged larvae born to heat‐killed‐ or live‐Serratia‐injected mothers, supported lower microbial loads and cleared the infection faster than progeny of control mothers. Our data support the notion that mothers can anticipate the future pathogenic risks and immunological needs of their unborn offspring, providing progeny with enhanced immune protection likely through transgenerational immune priming. Although the inclusion of live Serratia into oocytes does not appear to be the mechanism by which mothers confer protection to their young, other mechanisms, including epigenetic modifications in the progeny due to maternal pathogenic stress, may be at play. The adaptive nature of maternal effects in the face of pathogenic stress provides insights into parental investment, resource allocation, and life‐history theories and highlights the significant role that pathogen‐induced maternal effects play as generators and modulators of evolutionary change.
Collapse
Affiliation(s)
- Rebeca B Rosengaus
- Department of Marine and Environmental Sciences Northeastern University Boston MA USA
| | - Nicole Hays
- Department of Biology Northeastern University Boston MA USA
| | - Colette Biro
- Department of Biology Northeastern University Boston MA USA
| | - James Kemos
- Department of Biology Northeastern University Boston MA USA
| | - Muizz Zaman
- Department of Biology Northeastern University Boston MA USA
| | - Joseph Murray
- Department of Biology Northeastern University Boston MA USA
| | - Bruck Gezahegn
- Department of Biology Northeastern University Boston MA USA
| | - Wendy Smith
- Department of Biology Northeastern University Boston MA USA
| |
Collapse
|