1
|
Guan X, Wu Q, Sun B. MicroRNA-regulated flounder CLDN4 functions in anti-bacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110270. [PMID: 40074190 DOI: 10.1016/j.fsi.2025.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/18/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
CLDN4 belongs to a multi-transmembrane protein family of claudins, which mainly functions in cell-cell adhesion and migration. MicroRNAs (miRNAs) are important post-transcriptional regulating factors that participate in broad biological process including immunity. Through high-throughput RNA sequencing strategy, a flounder miRNA, miR-29-x, was identified to be responsible to both bacteria and virus. In this study, we explored the regulatory mechanism and function of miR-29-x and its target gene of flounder CLDN4 (named PoCLDN4). We proved that miR-29-x could interact with the 3'UTR of PoCLDN4 and negatively regulate its expression. PoCLDN4 located on cell membrane, while the depletion of extracellular loop E2 abolished the membrane localization of this protein. E3 could bind different bacteria, and mutation of the amino acids of 13E and 18E enhanced this capacity, while mutation of 10L abolish this capacity. Further study revealed the bacteria killing effect of E3 and verified 10L as a key factor. These results identified the interaction between miR-29-x and PoCLDN4, and unraveled the function as well as the molecular basis of flounder CLDN4 in anti-bacterial immunity.
Collapse
Affiliation(s)
- Xiaolu Guan
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Qian Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Boguang Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Liu H, Tan S, Han S, Liu X, Li Z, Wang N, Wu Z, Ma J, Shi K, Wang W, Sha Z. Effects of miR-722 on gene expression and alternative splicing in the liver of half-smooth tongue sole after infection with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109275. [PMID: 38081443 DOI: 10.1016/j.fsi.2023.109275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/31/2023]
Abstract
MicroRNAs play crucial roles in various biological processes, including but not limited to differentiation, development, disease, and immunity. However, their immunoregulatory roles in half-smooth tongue sole are lacking. Our previous studies indicated that miR-722 could target C5aR1 to modulate the complement pathway to alleviate inflammatory response and even affect the mortality after the bacterial infection with Vibrio anguillarum. Driven by the purpose of revealing the underlying mechanisms, in this study, we investigated the effects of miR-722 on the gene expression and alternative splicing (AS) in the liver of half-smooth tongue sole after Vibrio anguillarum infection, with the approach of miR-722 overexpression/silencing and subsequent RNA-seq. Among the different comparisons, the I group (miR-722 inhibitor and V. anguillarum) versus blank control (PBS) exhibited the highest number of differentially expressed genes (DEGs), suggesting that the immune response was overactivated after inhibiting the miR-722. In addition, enrichment analyses were performed to reveal the functions of DEGs and differential AS (DAS) genes, reflecting the enrichment of RNA splicing and immune-related pathways including NF-κB and T cell receptor signaling pathway. Comparing the M group (miR-722 mimic and V. anguillarum) with the negative control (random sequence and V. anguillarum), two immune-related genes, cd48 and mapk8, were differentially expressed, of which mapk8 was also differentially spliced, indicating their importance in the immune response. Furthermore, representative gene analysis was performed, suggesting their corresponding functional changes due to AS. To verify the RNA-seq data, quantitative real-time PCR was employed with twenty pairs of primers for DEGs and DAS events. Overall, our results demonstrated that miR-722 could mediate the transcriptome-wide changes of gene expression and AS in half-smooth tongue sole, and provided insights into the regulatory role of miR-722 in immune responses, laying the foundation for further functional analyses and practical applications in aquaculture.
Collapse
Affiliation(s)
- Hongning Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Sen Han
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xinbao Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhujun Li
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Ningning Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; College of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhendong Wu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Jie Ma
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Kunpeng Shi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Wenwen Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
3
|
Sun H, Chen Z, Jiang J, Dong Y, Wang B, Guan X, Zhao L, Gao S, Zunchun Z. Analyses of regulation between miRNA and DNA methyltransferase 1 related genes in sea cucumber Apostichopusjaponicus. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109169. [PMID: 37852510 DOI: 10.1016/j.fsi.2023.109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Affiliation(s)
- Hongjuan Sun
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Zhong Chen
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Jingwei Jiang
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Ying Dong
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Bai Wang
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Xiaoyan Guan
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Liang Zhao
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Shan Gao
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Zhou Zunchun
- Key Lab of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs, Key Laboratory of Germplasm Improvement and Fine Seed Breeding for Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| |
Collapse
|
4
|
de Assis Beneti SA, Dos Reis IC, Fierro-Castro C, Moromizato BS, do Valle Polycarpo G, Miasaki CT, Biller JD. Stress-associated β -glucan administration stimulates the TLR - MYD88 - NFKB1 signaling pathway in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109089. [PMID: 37722438 DOI: 10.1016/j.fsi.2023.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023]
Abstract
There is evidence that the administration of β-glucan can effectively activate several defense mechanisms, such as the Tlr-Myd88-Nfkb1 pathway that induces the expression of immune cytokines. Thus, the objective of this work was to evaluate whether β-glucan acts on the mechanisms of gene transcription via the Tlr-Myd88-Nfkb1 pathway in Nile tilapia under stress after challenge with Streptococcus agalactiae. Therefore, we evaluated the expression of immune system genes such as toll-like receptors 1 (tlr1), toll-like receptors 2 (tlr2), primary myeloid differentiation response gene (myd88) and nuclear factor kappa B1 (nfkb1). A total of 408 fish were distributed in 24 polyethylene boxes and randomly divided into eight groups with 3 replications each: C15: Tilapias received a control diet (free of β-glucan) for 15 days and were sampled after the 15th day of the experiment; C15D: Tilapias received a control diet (free of β-glucan) for 15 days, were challenged on the 14th day and were sampled at the 15th day of the experiment; β15: Tilapias received experimental diet (1g kg-1 of β-glucan) for 15 days and were sampled after 15 days; β15D: Tilapias received an experimental diet (1g kg-1 of β-glucan) for 15 days, were challenged on the 14th day and were sampled at the 15th day of the experiment; C30: Tilapias received a control diet (free of β-glucan) for 30 days and were sampled on the 30th day of the experiment; C30D: Tilapias received a control diet (free of β-glucan) for 30 days, were challenged on the 29th day and were sampled at the 30th day of the experiment; β30: Tilapias received experimental diet (1g kg-1 of β-glucan) for 30 days and were sampled after 30 days and β30D: Tilapias received experimental diet (1g kg-1 of β-glucan) for 30 days, were challenged on the 29th day and were sampled at 30 of the experiment. In the fish sampled at 15 and 30 days of the experiment, after being anesthetized and killed by brain section, cranial kidney and spleen were collected for gene expression analysis. The analyzes showed that the association of β-glucan and stressful management modulated the immune system, using the Tlr-Myd88-Nfkb1 signaling pathway, indicating that this compound can be used to promote early defense and protect fish against diseases.
Collapse
Affiliation(s)
- Simone Andrea de Assis Beneti
- Departamento de Produção Animal, Faculdade de Ciências Agrárias e Tecnológicas, UNESP, Campus de Dracena, Rod. Cmte. João Ribeiro de Barros, km 651- Dracena, SP, 17900-000, Brazil
| | - Ingrid Camargo Dos Reis
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, UNESP, Campus de Jaboticabal, Via de Acesso Prof.Paulo Donato Castellane s/n- Jaboticabal, SP, 14884-900, Brazil
| | - Camino Fierro-Castro
- Departamento de Molecular Biologia y Genetica, Facultad de Ciencias Biológicas y Ambientales, Universitat of León, Campus de Vegazana s/n, 24071, León, Spain
| | - Basia Schlichting Moromizato
- Departamento de Produção Animal, Faculdade de Ciências Agrárias e Tecnológicas, UNESP, Campus de Dracena, Rod. Cmte. João Ribeiro de Barros, km 651- Dracena, SP, 17900-000, Brazil
| | - Gustavo do Valle Polycarpo
- Departamento de Produção Animal, Faculdade de Ciências Agrárias e Tecnológicas, UNESP, Campus de Dracena, Rod. Cmte. João Ribeiro de Barros, km 651- Dracena, SP, 17900-000, Brazil
| | - Celso Tadao Miasaki
- Departamento de Produção Animal, Faculdade de Ciências Agrárias e Tecnológicas, UNESP, Campus de Dracena, Rod. Cmte. João Ribeiro de Barros, km 651- Dracena, SP, 17900-000, Brazil
| | - Jaqueline Dalbello Biller
- Departamento de Produção Animal, Faculdade de Ciências Agrárias e Tecnológicas, UNESP, Campus de Dracena, Rod. Cmte. João Ribeiro de Barros, km 651- Dracena, SP, 17900-000, Brazil.
| |
Collapse
|
5
|
Zhao G, Liu Z, Quan J, Sun J, Li L, Lu J. Potential role of miR-8159-x in heat stress response in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2023; 268:110877. [PMID: 37356566 DOI: 10.1016/j.cbpb.2023.110877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is a representative species of cold-water fish. Elevated temperatures during summer often result in significant high mortality rates. MicroRNAs (miRNAs) are class of small non-coding RNAs that play a crucial role as post-transcriptional regulators in various biological processes. Emerging evidence suggests that miRNAs are important regulators role during heat stress. Analyzing previously obtained miRNA-sequencing data, we observed substantial down regulation of miR-8159-x in the liver tissue of heat stressed rainbow trout. In this study, we conducted a dual luciferase reporter assay to validate that miR-8159-x target, a key gene involved in heat stress in rainbow trout. By examining the expression patterns of miR-8159-x and hsp90a1 in the liver tissue at 18 °C (CG) and 24 °C (HS) groups, we propose that miR-8159-x may negatively regulate hsp90a1. Furthermore, in vitro hepatocyte assay, transfection with miR-8159-x mimics significantly reduced the expression level of hsp90a1, whereas transfection with a miR-8159-x inhibitor yielded the opposite effect. Additionally, overexpression of miR-8159-x inhibited cell proliferation and induced apoptosis in normal rainbow trout hepatocytes. We further investigated the effects of miR-8159-x overexpression or inhibition on the mRNA and protein levels of the target gene hsp90a1 under heat stress conditions. In conclusion, our findings suggest that miR-8159-x participates in the biological response to heat stress by targeting hsp90a1. These results contribute to a better understanding of the molecular mechanisms underlying heat stress in rainbow trout and provide valuable insights for future research.
Collapse
Affiliation(s)
- Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
6
|
Comparative Analysis of miRNA-mRNA Regulation in the Testes of Gobiocypris rarus following 17α-Methyltestosterone Exposure. Int J Mol Sci 2023; 24:ijms24044239. [PMID: 36835651 PMCID: PMC9968023 DOI: 10.3390/ijms24044239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
17α-Methyltestosterone (17MT), a synthetic organic compound commonly found in sewage waters, can affect reproduction in aquatic animals, such as tilapia and yellow catfish. In the present study, male Gobiocypris rarus were exposed to 25, 50, and 100 ng/L of 17α-methyltestosterone (17MT) for 7 days. We first analyzed miRNA- and RNA-seq results to determine miRNA-target gene pairs and then developed miRNA-mRNA interactive networks after 17MT administration. Total weights, total lengths, and body lengths were not significantly different between the test groups and control groups. The paraffin slice method was applied to testes of G. rarus in the MT exposure and control groups. We found that there were more mature sperm (S) and fewer secondary spermatocytes (SSs) and spermatogonia (SGs) in the testes of control groups. As 17MT concentration increased, fewer and fewer mature sperm (S) were observed in the testes of male G. rarus. The results showed that FSH, 11-KT, and E2 were significantly higher in individuals exposed to 25 ng/L 17MT compared with the control groups. VTG, FSH, LH, 11-KT, and E2 were significantly lower in the 50 ng/L 17MT exposure groups compared to the control groups. VTG, FSH, LH, 11-KT, E2, and T were significantly lower in the groups exposed to 100 ng/L 17MT. High-throughput sequencing revealed 73,449 unigenes, 1205 known mature miRNAs, and 939 novel miRNAs in the gonads of G. rarus. With miRNA-seq, 49 (MT25-M vs. Con-M), 66 (MT50-M vs. Con-M), and 49 (MT100-M vs. Con-M) DEMs were identified in the treatment groups. Five mature miRNAs (miR-122-x, miR-574-x, miR-430-y, lin-4-x, and miR-7-y), as well as seven differentially expressed genes (soat2, inhbb, ihhb, gatm, faxdc2, ebp, and cyp1a1), which may be associated with testicular development, metabolism, apoptosis, and disease response, were assayed using qRT-PCR. Furthermore, miR-122-x (related to lipid metabolism), miR-430-y (embryonic development), lin-4-x (apoptosis), and miR-7-y (disease) were differentially expressed in the testes of 17MT-exposed G. rarus. This study highlights the role of miRNA-mRNA pairs in the regulation of testicular development and immune response to disease and will facilitate future studies on the miRNA-RNA-associated regulation of teleost reproduction.
Collapse
|
7
|
Zhao T, Zou Y, Yan H, Chang Y, Zhan Y. Non-coding RNAs targeting NF-κB pathways in aquatic animals: A review. Front Immunol 2023; 14:1091607. [PMID: 36825023 PMCID: PMC9941745 DOI: 10.3389/fimmu.2023.1091607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Nuclear factor-kappa B (NF-κB) pathways have a close relationship with many diseases, especially in terms of the regulation of inflammation and the immune response. Non-coding RNAs (ncRNAs) are a heterogeneous subset of endogenous RNAs that directly affect cellular function in the absence of proteins or peptide products; these include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), etc. Studies on the roles of ncRNAs in targeting the NF-κB pathways in aquatic animals are scarce. A few research studies have confirmed detailed regulatory mechanisms among ncRNAs and the NF-κB pathways in aquatic animals. This comprehensive review is presented concerning ncRNAs targeting the NF-κB pathway in aquatic animals and provides new insights into NF-κB pathways regulatory mechanisms of aquatic animals. The review discusses new possibilities for developing non-coding-RNA-based antiviral applications in fisheries.
Collapse
Affiliation(s)
- Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Yang Zou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Hanyu Yan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
8
|
Yang L, Zheng W, Lv X, Xin S, Sun Y, Xu T. microRNA-144 modulates the NF-κB pathway in miiuy croaker (Miichthys miiuy) by targeting IκBα gene. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104359. [PMID: 35092745 DOI: 10.1016/j.dci.2022.104359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNA) are non-coding RNAs that regulate many biochemical processes, such as cell growth, proliferation and immune responses. In this study, we investigated miR-144 as a regulator of IκBα that promotes the activation of NF-κB signaling pathway. And IκBα interact with p65 blocks nuclear translocation of NF-κB and anchors NF-κB in cytoplasmic quiescent cells in an inactive form. The seed region of miR-144 can regulate gene expression by binding to the 3' UTR of IκBα and repress IκBα expression at the post-transcriptional level. More importantly, miR-144 can promote the activation of p65 by inhibiting IκBα, thus affecting the NF-κB signaling pathway. Thus, preventing excessive inflammatory responses from causing autoimmune diseases will help to further understand the immunoregulatory mechanisms of miRNAs in fish after invasion by pathogens.
Collapse
Affiliation(s)
- Liyuan Yang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shiying Xin
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| |
Collapse
|
9
|
Zhang H, Chen Y, Cui J, Yan X, Sun Y, Xu T. PCNA negatively regulates MITA through the autophagy pathway in miiuy croaker (Miichthys miiuy). FISH & SHELLFISH IMMUNOLOGY 2022; 124:21-27. [PMID: 35367373 DOI: 10.1016/j.fsi.2022.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Interferon-mediated innate immune response is the first line of defense against foreign pathogen infection. Overexpression of MITA can activate the expression of interferon and promote the innate immune response of the body to the virus. These innate immune responses are tightly controlled to prevent the host from over-immunizing itself. In this study, we reported that structurally highly conserved PCNA negatively regulates MITA. PCNA overexpression can promote MITA degradation and block the expression of interferon, while the autophagy inhibitor 3-MA significantly inhibits MITA degradation, indicating that PCNA can degrade MITA through the autophagy pathway. PCNA inhibits interferon production by targeting MITA and avoids excessive immune response. In summary, our results indicate that PCNA is involved in the immune response by degrading MITA through the autophagy pathway, which will provide new ideas for further studies on the regulatory mechanism of immune signaling pathways in lower vertebrates.
Collapse
Affiliation(s)
- Han Zhang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ya Chen
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| |
Collapse
|
10
|
Dong W, Geng S, Cui J, Gao W, Sun Y, Xu T. MicroRNA-103 and microRNA-190 negatively regulate NF-κB-mediated immune responses by targeting IL-1R1 in Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2022; 123:94-101. [PMID: 35240295 DOI: 10.1016/j.fsi.2022.02.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/26/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Accumulating evidence has demonstrated that microRNAs (miRNAs) regulate various physiological and pathological processes at the transcriptional level, thus called novel regulators in immune response. In this study, we used bioinformatics and functional experiments to determine the role of miR-103 and miR-190 in the regulation of IL-1R1 gene involved in the immune and inflammatory responses in miiuy croakers. First, we predicted the target genes of miR-103 and miR-190 through bioinformatics and found that IL-1R1 is a direct target gene of miR-103 and miR-190. This was further confirmed by the dual-luciferase reporter assay that the over-expression of miR-103, miR-190 mimics and the pre-miR-103, pre-miR-190 plasmids inhibit the luciferase levels of the wild-type of IL-1R1 3'UTR. miR-103 and miR-190 inhibitors increase the luciferase levels of IL-1R1-3'UTR. Additionally, we found that miR-103 and miR-190 could negatively regulate the mRNA expression of IL-1R1. Importantly, we demonstrated that miR-103 and miR-190 significantly inhibit the NF-κB signaling pathway by targeting IL-1R1 upon LPS stimulation. Collectively, these results provide strong evidence for an important regulatory mechanism of miR-103 and miR-190 targeting the IL-1R1 gene, thereby preventing excessive inflammatory immune responses from causing autoimmunity.
Collapse
Affiliation(s)
- Wenjing Dong
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenya Gao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| |
Collapse
|
11
|
Yang L, Zheng W, Xin S, Lv X, Sun Y, Xu T. microRNA-122 regulates NF-κB signaling pathway by targeting IκBα in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2022; 122:345-351. [PMID: 35182723 DOI: 10.1016/j.fsi.2022.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The inhibitory protein IκBα plays a key role in the inflammatory process and immune response by regulating the activity of the transcription factor NF-κB. microRNA (miR) is a small non-coding RNA that can regulate many biochemical processes, such as cell growth, proliferation, and immune response. In this study, it was first predicted that IκBα is the target of miR-122 through bioinformatics, and it was confirmed by dual fluorescence experiments. Then we found that miR-122 can inhibit the expression of IκBα at the mRNA and protein levels, thereby promoting the p65-activated NF-κB pathway. It is speculated that miR-122 plays an important role in the innate immunity of teleost fish. This study will help to further understand miRNAs regulatory mechanism in teleost fish.
Collapse
Affiliation(s)
- Liyuan Yang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shiying Xin
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| |
Collapse
|
12
|
Geng S, Gu L, Zhong L, Xu T, Sun Y. Genomic organization, evolution and functional characterization of caspase-2 and caspase-8 in miiuy croaker (Miichthys miiuy). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104308. [PMID: 34742824 DOI: 10.1016/j.dci.2021.104308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
As the central link and executor of cell apoptosis, the caspase protease family has received extensive attention in recent years. However, the genetic characteristics and immune functions of some caspases are still unknown in fish. In our study, we cloned the full-length caspase-2 (mmCasp2) and caspase-8 (mmCasp2) of miiuy croaker, then we analyzed characteristics and functions of these two genes which are upstream of the apoptosis cascade reaction. Mmcasp2 and mmCasp8 exhibited a conserved domain (CASc), and the different part is that the mmCasp2 has a CARD domain, while mmCasp8 have two DED domains. Sequence and evolution analysis results showed that caspase-2 is more conservative than caspae-8 in the process of evolution. Cellular localization analysis showed that the distribution of mmCasp2 and mmCasp2 was in cytoplasm. The real-time PCR analysis showed that these two caspases are constitutively expressed in different tissues, and the expression of mmCasp2 and mmCasp8 were up-regulated in the liver, spleen, and kidney after infection with V. anguillarum. Lastly, qRT-PCR and Luciferase assays analysis showed that mmCasp2 and mmCasp8 can inhibit the NF-кB pathway. In general, we systematically analyzed the structure, evolution and related functional experiments of the caspase-2 and caspase-8 in miiuy croaker, which will help further understand the role caspase family plays in the apoptosis and immune response.
Collapse
Affiliation(s)
- Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liping Gu
- Department of Medical Ultrasound, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lichang Zhong
- Department of Medical Ultrasound, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| |
Collapse
|
13
|
Gao FY, Zhou X, Lu MX, Wang M, Liu ZG, Cao JM, Ke XL, Yi MM, Qiu DG. TLR1 in Nile tilapia: The conserved receptor cannot interact with MyD88 and TIRAP but can activate NF-κB in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104300. [PMID: 34673140 DOI: 10.1016/j.dci.2021.104300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Toll-like receptors (TLRs) play a critical role in the innate immune response of fish. In this study, we isolated the cDNA sequence of Nile tilapia TLR1 (OnTLR1). The deduced OnTLR1 protein contains a signal peptide, 7 leucine-rich repeats (LRRs), a C-terminal LRR (LRR-CT), a transmembrane region and a highly conserved TIR domain. In healthy Nile tilapia, the OnTLR1 transcript was broadly expressed in all examined tissues, with the highest expression levels in the spleen. After infection with Streptococcus agalactiae, the OnTLR1 transcripts were upregulated in the gill and kidney. After stimulation with polyinosinic-polycytidylic acid (poly(I:C)), the expression levels of OnTLR1 were significantly downregulated in the intestine, whereas OnTLR1 transcripts were significantly upregulated in the kidney. After challenge with lipopolysaccharide (LPS), the expression levels of OnTLR1 were significantly upregulated in the spleen and kidney. The subcellular localization showed that OnTLR1 was expressed in the cytoplasm. TLR1 significantly increased MyD88-dependent NF-κB activity. However, the results of a pull-down assay showed that OnTLR1 did not interact with MyD88 or TIRAP. Binding assays revealed the specificity of OnTLR1 for pathogen-associated molecular patterns (PAMPs) and bacteria that included S. agalactiae, Aeromonas hydrophila and poly(I:C) and LPS. Taken together, these findings suggest that OnTLR1, as a pattern recognition receptor (PRR), might play an important role in the immune response to pathogen invasion.
Collapse
Affiliation(s)
- Feng-Ying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Xin Zhou
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Mai-Xin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Zhi-Gang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Jian-Meng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Xiao-Li Ke
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Meng-Meng Yi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province/Fisheries Research Institute of Fujian, Xiamen, Fujian, 361013, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Deng-Gao Qiu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province/Fisheries Research Institute of Fujian, Xiamen, Fujian, 361013, China.
| |
Collapse
|
14
|
Chu Q, Han J, Sun L, Cui J, Xu T. Characterization of MDA5 and microRNA-203 negatively regulates the RLR signaling pathway via targeting MDA5 in miiuy croaker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104259. [PMID: 34536468 DOI: 10.1016/j.dci.2021.104259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
MDA5 is a member of retinoic acid-inducible gene I (RIG-I)-like receptors (RLR receptors), which may play a crucial role in the immune regulation process. Recently, microRNAs (miRNAs) have been shown to act as an important regulator in the RLRs signaling pathway. Additionally, the MDA5 gene, as a significant cytosolic pathogen recognition receptor (PRR), its characteristics and functions have been extensively investigated, while less research has been done on the mechanisms of MDA5-miRNA mediated gene regulation. In this study, the evolution and functional characterization of MDA5 from miiuy croaker (mmiMDA5) were characterized. Comparative genomic analysis demonstrated that the ascidiacea and superclass do not have the MDA5 gene in the process of evolution. MDA5 contains four structural domains: CARD, ResIII, Helicase C, and RIG-I C-RD. The MDA5 was ubiquitously expressed in all tested miiuy croaker tissues. Moreover, the expressions were significantly up-regulated after stimulation with poly (I: C), which indicated that MDA5 might be involved in the antiviral immune response. The bioinformatics predicted programs have indicated that miR-203 has a direct negative regulatory effect on MDA5 in miiuy croaker. Furthermore, the dual-luciferase reporter assay have showed that miR-203 was the direct negative regulator of MDA5 in miiuy croaker. This study is the first to demonstrate that miRNA can suppress cytokines by regulating the RLR signaling pathway in teleost fish, providing some new ideas for studying miRNA-mediated regulation of immune responses in mammals.
Collapse
Affiliation(s)
- Qing Chu
- School of Agriculture, Ludong University, Yantai, China.
| | - Jingjing Han
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Lingping Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
15
|
Sun Y, Zhang L, Hong L, Zheng W, Cui J, Liu X, Xu T. MicroRNA-181b-2 and MicroRNA-21-1 Negatively Regulate NF-κB and IRF3-Mediated Innate Immune Responses via Targeting TRIF in Teleost. Front Immunol 2021; 12:734520. [PMID: 34956174 PMCID: PMC8695722 DOI: 10.3389/fimmu.2021.734520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Upon recognition of bacterial or viral components by Toll-like receptors (TLRs), cells could be activated to induce a series of reactions to produce inflammatory cytokines, type I interferon (IFN), and IFN stimulating genes (ISG). MicroRNAs (miRNAs) are an important regulatory molecules that are widely involved in the regulatory networks of mammalian inflammation and immune responses; however, in lower vertebrates, the regulatory network of miRNA-mediated immune responses is poorly understood. Here, we report two miRNAs form Miichthys miiuy, namely, miR-181b-2 and miR-21-1, that play a negative role in host antiviral and antibacterial immunity. We found that miR-181b-2 and miR-21-1 are abundantly expressed in gram-negative bacteria, as well as RNA rhabdovirus infection. Inducible miR-181b-2 and miR-21-1 suppress the production of inflammatory cytokines and type I IFN by targeting TRIF, thereby avoiding excessive inflammation. We further revealed that miR-181b-2 and miR-21-1 modulate antibacterial and antiviral immunity through the TRIF-mediated NF-κB and IRF3 signaling pathways. The overall results indicate that miR-181b-2 and miR-21-1 act as negative feedback regulators and participate in host antibacterial and antiviral immune responses; this finding could provide information for a deeper understanding of the resistance of lower vertebrates to the invasion of pathogens and to avoidance of excessive immunity.
Collapse
Affiliation(s)
- Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lei Zhang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ling Hong
- School of Medicine, Tongji University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xuezhu Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
16
|
Dong W, Gao W, Cui J, Xu T, Sun Y. microRNA-148 is involved in NF-κB signaling pathway regulation after LPS stimulation by targeting IL-1β in miiuy croaker. FISH & SHELLFISH IMMUNOLOGY 2021; 118:66-71. [PMID: 34474149 DOI: 10.1016/j.fsi.2021.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/06/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The inflammatory response is a protective process to clear detrimental stimuli, constitutes the defense against infectious pathogens. Clearing pathogen infection requires appropriate immune and inflammatory response, but excessive inflammatory response can lead to uncontrolled inflammation, autoimmune disease, or pathogen transmission. Accumulating evidences show that miRNAs are important and multifunctional regulators of innate immunity and inflammation. However, in the inflammatory response of lower vertebrates, the miRNAs regulatory networks are largely unknown. In this study, a combination of bioinformatics and experimental techniques were used to investigate the functions of miR-148. IL-1β is a hypothetical target gene of miR-148 predicted by bioinformatics. In addition, dual-luciferase reporter gene experiment was used to verify the targeting effect of miR-148 on IL-1β-3'UTR. miR-148 inhibits IL-1β expression in a dose-dependent manner at protein and mRNA levels. It is important that miR-148 participates in regulation of LPS-induced the NF-κB signaling pathway by inhibiting IL-1β. These results will improve our understanding of the regulation of miRNAs in fish on the immune response.
Collapse
Affiliation(s)
- Wenjing Dong
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenya Gao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| |
Collapse
|
17
|
Zhou W, Xie Y, Li Y, Xie M, Zhang Z, Yang Y, Zhou Z, Duan M, Ran C. Research progress on the regulation of nutrition and immunity by microRNAs in fish. FISH & SHELLFISH IMMUNOLOGY 2021; 113:1-8. [PMID: 33766547 DOI: 10.1016/j.fsi.2021.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are a class of highly conserved, endogenous non-coding single-stranded small RNA molecules with a length of 18-25 nucleotides. MiRNAs can negatively regulate the target gene through complementary pairing with the mRNA. It has been more than 20 years since the discovery of miRNA molecules, and many achievements have been made in fish research. This paper reviews the research progress in the regulation of fish nutrition and immunity by miRNAs in recent years. MiRNAs regulate the synthesis of long-chain polyunsaturated fatty acids, and are involved in the metabolism of glucose, lipids, as well as cholesterol in fish. Moreover, miRNAs play various roles in antibacterial and antiviral immunity of fish. They can promote the immune response of fish, but may also participate in the immune escape mechanism of bacteria or viruses. One important aspect of miRNAs regulation on fish immunity is mediated by targeting pattern recognition receptors and downstream signaling factors. Together, current results indicate that miRNAs are widely involved in the complex regulatory network of fish. Further studies on fish miRNAs may deepen our understanding of the regulatory network of fish nutrition and immunity, and have the potential to promote the development of microRNA-based products and detection reagents that can be applied in aquaculture industry.
Collapse
Affiliation(s)
- Wei Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Yadong Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Yu Li
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Mingxu Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
18
|
Ghafouri-Fard S, Abak A, Shoorei H, Talebi SF, Mohaqiq M, Sarabi P, Taheri M, Mokhtari M. Interaction between non-coding RNAs and Toll-like receptors. Biomed Pharmacother 2021; 140:111784. [PMID: 34087695 DOI: 10.1016/j.biopha.2021.111784] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs) are a large group of pattern recognition receptors which are involved in the regulation of innate immune responses. Based on the interplay between TLRs and adapter molecules, two distinctive signaling cascades, namely the MyD88-dependent and TRIF-dependent pathways have been recognized. TLRs are involved in the development of a wide variety of diseases including cancer and autoimmune disorders. A large body of evidence has shown interaction between two classes of non-coding RNAs, namely microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). These interactions have prominent roles in the pathogenesis of several disorders including infectious disorders, autoimmune conditions and neoplastic disorders. This review aims at description of the interaction between these non-coding RNAs and TLRs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
| | - Parisa Sarabi
- Deputy for Research & Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Mokhtari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Ren X, Cui J, Xu T, Sun Y. microRNA-128 inhibits the inflammatory responses by targeting TAB2 in miiuy croaker, Miichthysmiiuy. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103976. [PMID: 33347907 DOI: 10.1016/j.dci.2020.103976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The inflammatory response is a self-defense process that fights the pathogen invasion by eliminating harmful stimuli. However, excessive inflammation may disrupt immune homeostasis, even causing chronic inflammation or autoimmune diseases. MicroRNAs (miRNAs) are a crucial regulator that can negatively regulate gene expression and participate in multiple biological processes of growth, development, and immune response in organisms. However, the miRNA-mediated modulation networks of inflammatory responses remain largely unclear in lower vertebrates. In this study, miR-128 was identified as a negative regulator to participate in the NF-κB signaling pathway by targeting TAB2 in miiuy croaker. First, we predicted target genes of miR-128 through the bioinformatics software programs and found that TAB2 is a direct target of miR-128. We also found that miR-128 can inhibit TAB2 expression at the mRNA and protein levels. Besides, upon LPS stimulation, miR-128 inhibits the expression of inflammatory cytokines by targeting TAB2 to avoid excessive inflammation. Particularly, we found that miR-128 can regulate TAB2-mediated NF-κB signaling pathways. In summary, our results indicate that miR-128 plays a critical role in suppressing inflammatory responses by regulating the TAB2-mediated NF-κB signaling pathway in miiuy croaker.
Collapse
Affiliation(s)
- Xiaomeng Ren
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| |
Collapse
|
20
|
Long noncoding RNA AANCR modulates innate antiviral responses by blocking miR-210-dependent MITA downregulation in teleost fish, Miichthys miiuy. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1131-1148. [PMID: 32997329 DOI: 10.1007/s11427-020-1789-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 01/17/2023]
Abstract
Viral infection induces the initiation of antiviral effectors and cytokines which are critical mediators of innate antiviral responses. The critical molecular determinants are responsible for triggering an appropriate immune response. Long noncoding RNAs (lncRNAs) have emerged as new gene modulators involved in various biological processes, while how lncRNAs operate in lower vertebrates are still unknown. Here, we discover a long noncoding RNA, termed antiviral-associated long noncoding RNA (AANCR), as a novel regulator for innate antiviral responses in teleost fish. The results indicate that fish MITA plays an essential role in host antiviral responses and inhibition of Siniperca chuatsi rhabdovirus (SCRV) production. miR-210 reduces MITA expression and suppress MITA-mediated antiviral responses, which may help viruses evade host antiviral responses. Further, AANCR functions as a competing endogenous RNA (ceRNA) for miR-210 to control protein abundance of MITA, thereby inhibiting SCRV replication and promoting antiviral responses. Our data not only shed new light on understanding the function role of lncRNA in biological processes in teleost fish, but confirmed the hypothesis that ceRNA networks exist widely in vertebrates.
Collapse
|
21
|
Wang SP, Li W, Li C, Duan XY, Duan J. Effect of rs4719839 polymorphism on risk of ventilator-associated pneumonia, expression of microRNA-148 and autophagy-related 16-like 1 (ATG16L1). J Cell Mol Med 2020; 24:12599-12607. [PMID: 32940422 PMCID: PMC7686989 DOI: 10.1111/jcmm.15824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
MiR‐148 is a negative regulator of autophagy 16‐like 1 (ATG16L1), a gene implicated in the pathogenesis of ventilator‐associated pneumonia (VAP). Therefore, the role of miR‐148 polymorphism in the pathogenesis of VAP was studied here. The expression of miR‐148, ATG16L1, Beclin‐I, LC3‐II, TNF‐α and IL‐6 in serum and peripheral blood mononuclear cells (PBMCs) of VAP patients was detected to study their relationship in the pathogenesis of VAP. Chronic obstructive pulmonary disease patients carrying the AA/AG genotypes of miR‐148 rs4719839 single nucleotide polymorphism (SNP) were more prone to VAP due to the higher expression of miR‐148, TNF‐α and IL‐6 along with suppressed expression of ATG16L1, Beclin‐I and LC3‐II in their serum and PBMCs. Transfection of miR‐148 mimics to primary PBMCs genotyped as GG and AA decreased the expression of ATG16L1, Beclin‐I and LC3‐II. Finally, cells carrying the AA genotype of rs4719839 SNP were more sensitive to the role of LPS stimulation in suppressing ATG16L1, Beclin‐I and LC3‐II expression while activating TNF‐α and IL‐6 expression. Our work presented detailed evidence, suggesting that the rs4719839 polymorphism can affect the risk of VAP.
Collapse
Affiliation(s)
- Shu-Peng Wang
- Surgical Intensive Care Unit, China-Japan Friendship Hospital, Beijing, China
| | - Wen Li
- Surgical Intensive Care Unit, China-Japan Friendship Hospital, Beijing, China
| | - Chen Li
- Surgical Intensive Care Unit, China-Japan Friendship Hospital, Beijing, China
| | - Xue-Yan Duan
- Department of Internal Medicine, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Jun Duan
- Surgical Intensive Care Unit, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
22
|
Xuan M, Yan X, Liu X, Xu T. IRF1 negatively regulates NF-κB signaling by targeting MyD88 for degradation in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103709. [PMID: 32348788 DOI: 10.1016/j.dci.2020.103709] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
MyD88 is considered as one of the most crucial adaptors in TLR signaling pathway. MyD88 may be influential to interferon regulatory factors (IRFs), while the way that IRFs regulate MyD88 is not fully understood. In this study, we demonstrated that the member of IRF family named IRF1 in miiuy croaker played a role as a negative regulator of MyD88-mediated NF-κB signaling and promoted the degradation of MyD88. Firstly, we found the strong inhibitory effect of IRF1 on MyD88-mediated NF-κB signaling pathway. Secondly, we confirmed that IRF1 could enhance the degradation of MyD88, while the knockdown of IRF1 presented an opposite result. Furthermore, the DBD domain of IRF1 was necessary for the inhibition to MyD88. In addition, it could be found that IRF1 could promote MyD88 degradation through ubiquitin-proteasome pathway. Our findings suggest that miiuy croaker IRF1 negatively regulates the cellular response by targeting MyD88 for degradation, which provides new insights into the regulatory mechanism in teleost.
Collapse
Affiliation(s)
- Meihua Xuan
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuezhu Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Tianjun Xu
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
23
|
Zhang L, Chu Q, Chang R, Xu T. Inducible MicroRNA-217 Inhibits NF-κB– and IRF3-Driven Immune Responses in Lower Vertebrates through Targeting TAK1. THE JOURNAL OF IMMUNOLOGY 2020; 205:1620-1632. [DOI: 10.4049/jimmunol.2000341] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/11/2020] [Indexed: 12/23/2022]
|
24
|
Zhu M, Chen G, Yang Y, Yang J, Qin B, Gu L. miR‑217‑5p regulates myogenesis in skeletal muscle stem cells by targeting FGFR2. Mol Med Rep 2020; 22:850-858. [PMID: 32626929 PMCID: PMC7339560 DOI: 10.3892/mmr.2020.11133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNA-217-5p (miR-217-5p) has been implicated in cell proliferation; however, its role in skeletal muscle stem cells (SkMSCs) remains unknown. The present study aimed to explore the roles of miR‑217‑5p in the biological characteristics of SkMSCs. SkMSCs were identified by cell surface markers using flow cytometry. The present study observed that miR‑217‑5p mimics accelerated the proliferation and suppressed the differentiation in SkMSCs. In addition, the results of the present study revealed that fibroblast growth factor receptor 2 (FGFR2) was a target of miR‑217‑5p, as miR‑217‑5p bound directly to the 3'‑untranslated region of FGFR2 mRNA, resulting in increased FGFR2 mRNA and protein levels. In addition, the present study suppressed the expression of FGFR2 in SkMSCs using a selective FGFR inhibitor AZD4547 and detected the efficiency of inhibition by reverse transcription‑quantitative PCR and western blotting. miR‑217‑5p levels were positively associated with FGFR2 expression, which was upregulated and accelerated the proliferation of SkMSCs compared with that of the miR‑NC group. Collectively, these results demonstrated that miR‑217‑5p may act as a myogenesis promoter in SkMSCs by directly targeting FGFR2 and may regulate the myogenesis of these cells.
Collapse
Affiliation(s)
- Menghai Zhu
- Department of Orthopedic Trauma and Microsurgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Gang Chen
- Department of Orthopedic Trauma and Microsurgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yi Yang
- Department of Orthopedic Trauma and Microsurgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jiantao Yang
- Department of Orthopedic Trauma and Microsurgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bengang Qin
- Department of Orthopedic Trauma and Microsurgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liqiang Gu
- Department of Orthopedic Trauma and Microsurgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
25
|
Zhou R, Song W, Liu X, Xu T. DIGIRR as a member of the toll/IL-1R family negative regulates NF-κB signaling pathway in miiuy croaker. FISH & SHELLFISH IMMUNOLOGY 2020; 100:378-385. [PMID: 32194250 DOI: 10.1016/j.fsi.2020.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/28/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
The double-Ig-IL-1R related molecule (DIGIRR) is a member of the TIR (Toll -Interleukin-1 receptor) superfamily and plays an important role in the immune system, it is also as a negative regulator of the IL-1 signaling pathway. In this study, we identified and characterized the miiuy croaker DIGIRR (mmi-DIGIRR) gene. The results of gene structure analysis indicated that there were differences between the mmi-DIGIRR and mammalian SIGIRR, which there were two immunoglobulin (Ig) domains contained in extracellular region of mmi-DIGIRR. Sequence alignment analysis showed that fish DIGIRR shared some conserved sequences with other vertebrates and the evolution was relatively conservative. In order to further validate the function of mmi-DIGIRR and its expression levels in various tissues of fish, qRT-PCR has been conducted. The results showed DIGIRR has significant expression levels in liver, skin and muscle while expression levels in heart are low. The LPS-induced NF-κB activation was inhibited by overexpression of DIGIRR significantly. In conclusion, the evolution and function of mmi-DIGIRR were comprehensively analyzed in this study, which would provide a theoretical basis for the future research of fish DIGIRR.
Collapse
Affiliation(s)
- Ruxue Zhou
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Weihua Song
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xuezhu Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Tianjun Xu
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
26
|
Zhang L, Chu Q, Liu X, Xu T. microRNA-21 negatively regulates NF-κB signaling pathway via targeting IL1R1 in miiuy croaker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103578. [PMID: 31869675 DOI: 10.1016/j.dci.2019.103578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
microRNAs (miR) are non-coding RNAs that regulates many biochemical processes, such as cell growth, proliferation and immune response. In this study, the regulation of microRNA-21 (miR-21) to the nuclear factor kappaB (NF-κB) signaling pathway by target IL1R1 has been researched in miiuy croaker. First, we predicted the target gene of miR-21 through bioinformatics, and found that IL1R1 is a direct target of miR-21. Then, we found that the over-expression of miR-21 mimics and the pre-miR-21 plasmid inhibits the luciferase levels of the wild-type of IL1R1-3'UTR. miR-21 inhibitors increase the luciferase levels of IL1R1-3'UTR. Additionally, we also observed that the miR-21 could negative regulate the IL1R1 at the level of translation. At last, this study will help to further understand the immunomodulatory mechanisms of miRNAs in teleost fish after being invaded by pathogens.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China; Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Qing Chu
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuezhu Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Tianjun Xu
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
27
|
Xue X, Woldemariam NT, Caballero-Solares A, Umasuthan N, Fast MD, Taylor RG, Rise ML, Andreassen R. Dietary Immunostimulant CpG Modulates MicroRNA Biomarkers Associated with Immune Responses in Atlantic Salmon ( Salmo salar). Cells 2019; 8:E1592. [PMID: 31817907 PMCID: PMC6952924 DOI: 10.3390/cells8121592] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are key regulators in fish immune responses. However, no study has previously characterized the impact of polyriboinosinic polyribocytidylic acid (pIC) and formalin-killed typical Aeromonas salmonicida (ASAL) on miRNA expression in Atlantic salmon fed a commercial diet with and without immunostimulant CpG. To this end, first, we performed small RNA deep sequencing and qPCR analyses to identify and confirm pIC- and/or ASAL-responsive miRNAs in the head kidney of salmon fed a control diet. DESeq2 analyses identified 12 and 18 miRNAs differentially expressed in pIC and ASAL groups, respectively, compared to the controls. Fifteen of these miRNAs were studied by qPCR; nine remained significant by qPCR. Five miRNAs (miR-27d-1-2-5p, miR-29b-2-5p, miR-146a-5p, miR-146a-1-2-3p, miR-221-5p) were shown by qPCR to be significantly induced by both pIC and ASAL. Second, the effect of CpG-containing functional feed on miRNA expression was investigated by qPCR. In pre-injection samples, 6 of 15 miRNAs (e.g., miR-181a-5-3p, miR-462a-3p, miR-722-3p) had significantly lower expression in fish fed CpG diet than control diet. In contrast, several miRNAs (e.g., miR-146a-1-2-3p, miR-192a-5p, miR-194a-5p) in the PBS- and ASAL-injected groups had significantly higher expression in CpG-fed fish. Multivariate statistical analyses confirmed that the CpG diet had a greater impact on miRNA expression in ASAL-injected compared with pIC-injected fish. This study identified immune-relevant miRNA biomarkers that will be valuable in the development of diets to combat infectious diseases of salmon.
Collapse
Affiliation(s)
- Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.C.-S.); (N.U.)
| | - Nardos Tesfaye Woldemariam
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, N-0130 Oslo, Norway; (N.T.W.); (R.A.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.C.-S.); (N.U.)
| | - Navaneethaiyer Umasuthan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.C.-S.); (N.U.)
| | - Mark D. Fast
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Richard G. Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN 55330, USA;
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (A.C.-S.); (N.U.)
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, N-0130 Oslo, Norway; (N.T.W.); (R.A.)
| |
Collapse
|
28
|
Sun W, Liu R, Li P, Li Q, Cui H, Zheng M, Wen J, Zhao G. Chicken gga-miR-1306-5p targets Tollip and plays an important role in host response against Salmonella enteritidis infection. J Anim Sci Biotechnol 2019; 10:59. [PMID: 31338187 PMCID: PMC6628503 DOI: 10.1186/s40104-019-0365-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/17/2019] [Indexed: 01/26/2023] Open
Abstract
Background Increasing evidence indicates that microRNAs (miRNAs) are involved in inflammatory response and immune regulation following pathogen invasion. The purpose of this study was to elucidate the roles played by Gallus gallus microRNA-1306-5p (gga-miR-1306-5p) in host responses against potential invasion by Salmonella enteritidis (SE) in chickens and the underlying mechanisms. Results In present study, the expression levels of gga-miR-1306-5p were determined in both tissues and HD11 cells. The results showed that gga-miR-1306-5p was significantly increased following SE infection or lipopolysaccharide (LPS) stimulation. The dual luciferase reporter assay further validated that gga-miR-1306-5p targeted the Toll-interacting protein (Tollip), and thereby participated in the regulation of immune response against SE or LPS stimulation through binding with the 3'-untranslated region (3'UTR) of Tollip. Additionally, the expression of Tollip was significantly blocked by over-expressed gga-miR-1306-5p. The underlying mechanisms by which gga-miR-1306-5p modulated the production of pro-inflammatory cytokines were also investigated. Molecular biological assays demonstrated that overexpression of gga-miR-1306-5p promoted the production of pro-inflammatory mediators, including NF-κB, TNF-α, IL-6, and IL-1β, which produced effects similar to those of Tollip knockdown. Conclusions Taken together, gga-miR-1306-5p induced by SE or LPS, regulates the immune response by inhibiting Tollip, which activates the production of inflammatory cytokines. This study has provided the first direct evidence that gga-miR-1306-5p targets Tollip, and is involved in the host response against SE.
Collapse
Affiliation(s)
- Weiwei Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Peng Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Qinghe Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, 100193 China
| |
Collapse
|
29
|
Wang M, Jiang S, Wu W, Yu F, Chang W, Li P, Wang K. Non-coding RNAs Function as Immune Regulators in Teleost Fish. Front Immunol 2018; 9:2801. [PMID: 30546368 PMCID: PMC6279911 DOI: 10.3389/fimmu.2018.02801] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that are transcribed from DNA but not translated into proteins. ncRNAs function as key regulators of gene expression and chromatin modification. Recently, the functional role of ncRNAs in teleost fish has been extensively studied. Teleost fish are a highly diverse group among the vertebrate lineage. Fish are also important in terms of aquatic ecosystem, food production and human life, being the source of animal proteins worldwide and models of biomedical research. However, teleost fish always suffer from the invasion of infectious pathogens including viruses and bacteria, which has resulted in a tremendous economic loss to the fishing industry worldwide. Emerging evidence suggests that ncRNAs, especially miRNAs and lncRNAs, may serve as important regulators in cytokine and chemokine signaling, antigen presentation, complement and coagulation cascades, and T cell response in teleost fish. In this review, we summarize current knowledge and understanding of the roles of both miRNAs and lncRNAs in immune regulation in teleost fish. Molecular mechanism insights into the function of ncRNAs in fish immune response may contribute to the development of potential biomarkers and therapeutic targets for the prevention and treatment of fish diseases.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Cao Y, Wang D, Li S, Xu L, Zhao J, Liu H, Lu T, Zhang Q. Identification and analysis of differentially expressed microRNAs in rainbow trout (Oncorhynchus mykiss) responding to infectious hematopoietic necrosis virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:28-36. [PMID: 29990507 DOI: 10.1016/j.dci.2018.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of regulators essential for numerous biological processes. Infectious hematopoietic necrosis virus (IHNV) is one of the most important viral pathogens in salmon and trout. In this study, the miRNA expression profiles of rainbow trout upon IHNV infection were explored. In total, 392 known miRNAs and 936 novel miRNAs were identified. Twelve known and 13 novel miRNAs were differentially expressed between infected and uninfected fish. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that certain miRNA target genes were associated with biological regulation, the immune system, and signal transduction. In addition, over- and suppressed expression of miR-146a-3p, miR-155-5p, miR-216a-5p, and miR-499b-5p could respectively increase and decrease viral gene expression in cells and viral titers. MiR-146a-3p and miR-216a-5p inhibited the expression of type-I IFN and the Mx1 gene induced by IHNV. These results provide preliminary insights into the IHNV-host interactions mediated by miRNAs.
Collapse
Affiliation(s)
- Yongsheng Cao
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Di Wang
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Shaowu Li
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Liming Xu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Jingzhuang Zhao
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Hongbai Liu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Tongyan Lu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Qiya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
31
|
Zhao X, Chu Q, Cui J, Xu T. microRNA-19a as a negative regulator in TLR signaling pathway by direct targeting myeloid differentiation factor 88 in miiuy croaker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:171-175. [PMID: 29935287 DOI: 10.1016/j.dci.2018.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Pattern recognition receptors can recognize pathogens, and then cells are induced to produce pro-inflammatory cytokines and interferon by multiple signaling pathways. Nevertheless, excessive inflammation disrupts immune homeostasis, thereby inducing autoimmune and inflammatory diseases. Thus, the regulation of immune responses is extremely important for host to keep homeostasis. In this study, we found that miR-19a plays a negative regulator in MyD88-mediated NF-κB signaling pathway by targeting MyD88 in miiuy croaker. Furthermore, over-expression of miR-19a in macrophages suppresses the expression of MyD88 and its downstream signaling genes of IRAK1, IRAK4 and TRAF6, whereas, the inhibitor of miR-19a has opposite effect. This study can increase our knowledge and help us to furthermore understand miRNAs regulatory mechanism in teleost fish.
Collapse
Affiliation(s)
- Xueyan Zhao
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qing Chu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China
| | - Junxia Cui
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| |
Collapse
|
32
|
Sun Y, Chu Q, Zhao X, Zhou Z, Bi D, Xu T. microRNA-375 modulates the NF-κB pathway in miiuy croaker by targeting DUSP1 gene. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:196-202. [PMID: 29746983 DOI: 10.1016/j.dci.2018.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/06/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
microRNAs (miRNAs) are highly conserved, small non-coding endogenous molecule, and can participate in a variety of biological processes in organisms such as development, growth and immune response. Dual-Specificity Phosphatases (DUSPs) are enzymes that can remove phosphate groups from phosphatases. Research found that DUSP1 is an important molecule in the process of MAPK regulation. However, as a significant regulatory factor, the study of DUSP1 was very few in fish. Consequently, in this study, the regulatory role of miRNAs on DUSP1 has been verified through dual-luciferase reporter assay and western blotting analysis. Furethermore, we found that miR-375 mimics and pre-miR-375 plasmid can negatively regulate the target gene DUSP1 in miiuy croaker through combining with 3'untranslated region of DUSP1 gene. These experiment results directly indicate the negative regulatory function of miR-375 to DUSP1. Moreover, miR-375 can negatively regulate NF-κB signaling pathway via target to DUSP1. This study can increase our knowledge and help us to understand complexity of genomic and complex gene expression regulatory networks in teleost fish.
Collapse
Affiliation(s)
- Yuena Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| | - Qing Chu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China
| | - Xueyan Zhao
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhenzhen Zhou
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Dekun Bi
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China
| |
Collapse
|
33
|
Xu T, Chu Q, Cui J. Rhabdovirus-Inducible MicroRNA-210 Modulates Antiviral Innate Immune Response via Targeting STING/MITA in Fish. THE JOURNAL OF IMMUNOLOGY 2018; 201:982-994. [DOI: 10.4049/jimmunol.1800377] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/05/2018] [Indexed: 01/10/2023]
|
34
|
Zhao X, Huo R, Yan X, Xu T. IRF3 Negatively Regulates Toll-Like Receptor-Mediated NF-κB Signaling by Targeting TRIF for Degradation in Teleost Fish. Front Immunol 2018; 9:867. [PMID: 29755465 PMCID: PMC5932185 DOI: 10.3389/fimmu.2018.00867] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
NF-κB signaling is tightly regulated and essential to innate and adaptive immune responses, its regulatory mechanism remains unclear in various organisms, especially teleosts. In this study, we reported that IRF3 can negatively regulate TRIF-mediated NF-κB signaling pathway. Overexpression of IRF3 can inhibit TRIF-mediated NF-κB signaling pathway. However, knockdown of IRF3 had an opposite effect. IRF3 can promote the degradation of TRIF protein in mammal and fish cells, but this effect could be inhibited by MG132 treatment. Furthermore, we found that the inhibitory effect of IRF3 primary depended on its IRF association domain domain. IRF3 is crucial for the polyubiquitination and proteasomal degradation of TRIF. Our findings indicate that IRF3 negatively regulates TLR-mediated NF-κB signaling pathway by targeting TRIF for ubiquitination and degradation. This study provides a novel evidence on the negative regulation of innate immune signaling pathways in teleost fish and thus might provide new insights into the regulatory mechanisms in mammals.
Collapse
Affiliation(s)
- Xueyan Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China.,College of Marine Science, Zhejiang Ocean University, Zhoushan, China
| | - Ruixuan Huo
- College of Marine Science, Zhejiang Ocean University, Zhoushan, China
| | - Xiaolong Yan
- College of Marine Science, Zhejiang Ocean University, Zhoushan, China
| | - Tianjun Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China.,College of Marine Science, Zhejiang Ocean University, Zhoushan, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
35
|
Cheng H, Xue J, Yang S, Chen Y, Wang Y, Zhu Y, Wang X, Kuang D, Ruan Q, Duan Y, Wang G. Co-targeting of IGF1R/mTOR pathway by miR-497 and miR-99a impairs hepatocellular carcinoma development. Oncotarget 2018. [PMID: 28624790 PMCID: PMC5564620 DOI: 10.18632/oncotarget.18207] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Persistent activation of IGF1R/mTOR signaling pathway plays crucial role in the development of hepatocellular carcinoma (HCC). Therefore, our goal was to elucidate microRNAs (miRNAs) targeting IGF1R/mTOR and the therapeutic potential of single or dual miRNA on HCC development. In this study, we found that miR-497 and miR-99a that target the 3′-UTR of both IGF1R and mTOR were down-regulated in HCC human tissues and cell lines. Functional assay revealed that ectopic expression of miR-497 or miR-99a in HCC cells resulted in a significant inhibition on tumor growth and invasiveness in vitro and tumor development in vivo via repressing the expression of IGF1R and mTOR. Such inhibitory effect on tumor growth is reversed by application of IGF1 ((IGF1R ligand) or MHY1485 (mTOR agonist) in vitro. Furthermore, we found that simultaneous over-expression of both miR-497 and miR-99a exhibited much stronger inhibitory effects on tumor growth than their individual effect, which is still correlated with significantly stronger repression of IGF1R and mTOR. Overall, our results suggest that miR-497 and miR-99a both function as tumor-suppressive miRNAs by suppressing IGF1R/mTOR signaling pathway. The synergistic actions of these two miRNAs partly correlated with IGF1R and mTOR levels, which may represent new strategies for the molecular treatment of HCC.
Collapse
Affiliation(s)
- Henghui Cheng
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Jin Xue
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Shouhua Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Yaobin Chen
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Yu Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Yuanli Zhu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Xiaoyan Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Qiurong Ruan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Yaqi Duan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.,Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| |
Collapse
|
36
|
Zhou Z, Lin Z, Pang X, Shan P, Wang J. MicroRNA regulation of Toll-like receptor signaling pathways in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2018; 75:32-40. [PMID: 29408644 DOI: 10.1016/j.fsi.2018.01.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/12/2018] [Accepted: 01/25/2018] [Indexed: 06/07/2023]
Abstract
The innate immune system is the first line defense mechanism that recognizes, responds to, controls or eliminates invading pathogens. Toll-like receptors (TLRs) are a critical family of pattern recognition receptors (PRRs) tightly regulated by complex mechanisms involving many molecules to ensure a beneficial outcome in response to foreign invaders. MicroRNAs (miRNAs), a transcriptional and posttranscriptional regulator family in a wide range of biological processes, have been identified as new molecules related to the regulation of TLR-signaling pathways in immune responses. To date, at least 22 TLR types have been identified in more than a dozen different fish species. However, the functions and underlying mechanisms of miRNAs in the regulation of inflammatory responses related to the TLR-signaling pathway in fish is lacking. In this review, we summarize the regulation of miRNA expression profiles in the presence of TLR ligands or pathogen infections in teleost fish. We focus on the effects of miRNAs in regulating TLR-signaling pathways by targeting multiple molecules, including TLRs themselves, TLR-associated signaling proteins, and TLR-induced cytokines. An understanding of the relationship between the TLR-signaling pathways and miRNAs may provide new insights for drug intervention to manipulate immune responses in fish.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Zhijuan Lin
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China; Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Xin Pang
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Peipei Shan
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Jianxun Wang
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
37
|
Sun Y, Yang Q, Zhao X, Liu X, Xu T. Identification and functional characterization of interferon regulatory factor 7 involved in activation JAK/STAT pathway in miiuy croaker. FISH & SHELLFISH IMMUNOLOGY 2018; 73:50-56. [PMID: 29208498 DOI: 10.1016/j.fsi.2017.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Interferon regulatory factor (IRF) family is a transcription factor family which plays an important role in the regulation of natural immunity and immune cell differentiation. IRF7 is important to regulate the response of type I interferon (IFN) to viral infection. Thus, more researches of the characteristic and functions of IRF7 should be done to get better understanding of the mechanisms underlying immune reactions. Here, the characterization of full-length cDNA of IRF7 was reported from miiuy croaker. Gene characterization analysis of mmiIRF7 showed conservative with other fish and inferred that the difference of tryptophan residues in IRF7 may occurred in the period of fish-specific genome duplication (FSGD) or earlier. Syntenic analysis of IRF7 showed that fish IRF7 had more highly conserved synteny than the higher vertebrates IRF7. Luciferase reporter assays result showed the ability of mmiIRF7 for activation of IFNα, IFNβ, IFNγ and ISRE luciferase reporter. In this study, we systematically and comprehensively analyzed evolution and function of mmiIRF7, which will provide the basis for future research on fish IRF family.
Collapse
Affiliation(s)
- Yuena Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qiong Yang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xueyan Zhao
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xuezhu Liu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
38
|
Inducible MicroRNA-3570 Feedback Inhibits the RIG-I-Dependent Innate Immune Response to Rhabdovirus in Teleost Fish by Targeting MAVS/IPS-1. J Virol 2018; 92:JVI.01594-17. [PMID: 29093090 DOI: 10.1128/jvi.01594-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/23/2017] [Indexed: 01/14/2023] Open
Abstract
Effectively recognizing invading viruses and subsequently inducing innate antiviral immunity are essential for host antiviral defense. Although these processes are closely regulated by the host to maintain immune balance, viruses have evolved the ability to downregulate or upregulate these processes for their survival. MicroRNAs (miRNAs) are a family of small noncoding RNAs that play vital roles in modulating host immune response. Accumulating evidence demonstrates that host miRNAs as mediators are involved in regulating viral replication and host antiviral immunity in mammals. However, the underlying regulatory mechanisms in fish species are still poorly understood. Here, we found that rhabdovirus infection significantly upregulated host miR-3570 expression in miiuy croaker macrophages. Induced miR-3570 negatively modulated RNA virus-triggered type I interferon (IFN) and antiviral gene production, thus facilitating viral replication. Furthermore, miR-3570 was found to target and posttranscriptionally downregulate mitochondrial antiviral signaling protein (MAVS), which functions as a platform for innate antiviral signal transduction. Moreover, we demonstrated that miR-3570 suppressed the expression of MAVS, thereby inhibiting MAVS-mediated NF-κB and IRF3 signaling. The collective results demonstrated a novel regulation mechanism of MAVS-mediated immunity during RNA viral infection by miRNA.IMPORTANCE RNA viral infection could upregulate host miR-3570 expression in miiuy croaker macrophages. Induced miR-3570 negatively modulates RNA virus-triggered type I IFN and antiviral gene production, thus facilitating viral replication. Remarkably, miR-3570 could target and inhibit MAVS expression, which thus modulates MAVS-mediated NF-κB and IRF3 signaling. The collective results of this study suggest a novel regulation mechanism of MAVS-mediated immunity during RNA viral infection by miR-3570. Thus, a novel mechanism for virus evasion in fish is proposed.
Collapse
|
39
|
Xu T, Chu Q, Cui J, Zhao X. The inducible microRNA-203 in fish represses the inflammatory responses to Gram-negative bacteria by targeting IL-1 receptor-associated kinase 4. J Biol Chem 2017; 293:1386-1396. [PMID: 29242191 DOI: 10.1074/jbc.ra117.000158] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Innate immune responses are the first defense against pathogenic invaders. Activation and termination of these immune responses are regulated by several mechanisms. MicroRNAs (miRNAs), a group of small non-coding RNAs, have been implicated in the regulation of a spectrum of both physiological and pathological conditions, including immune responses. Although the immune regulatory miRNA networks in higher vertebrates have been well described, regulation of these responses in fish species is poorly understood. In the present study, we investigated the role of the miRNA miR-203 involved in inflammatory responses in miiuy croaker (Miichthys miiuy). We found that the Gram-negative bacterium Vibrio anguillarum and lipopolysaccharide significantly up-regulated host miR-203 expression. The increased miR-203 expression suppressed the production of inflammatory cytokines and thereby prevented mounting of a full immune response. Mechanistically, we identified and validated IL-1 receptor-associated kinase 4 (IRAK4) as a target of miR-203. We observed that miR-203 post-transcriptionally controls IRAK4 expression and thereby inhibits the activation of nuclear factor κB (NF-κB) signaling. In summary, our findings reveal that miR-203 in fish is a critical suppressor of innate immune responses to bacterial infection by suppressing a feedback to IRAK4-NF-κB-mediated signaling.
Collapse
Affiliation(s)
- Tianjun Xu
- From the College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China and .,Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing Chu
- From the College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China and
| | - Junxia Cui
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xueyan Zhao
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
40
|
Yang Q, Cui J, Song W, Zhao X, Xu T. The evolution and functional characterization of miiuy croaker interferon regulatory factor 9 involved in immune response. FISH & SHELLFISH IMMUNOLOGY 2017; 66:524-530. [PMID: 28546020 DOI: 10.1016/j.fsi.2017.05.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/15/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Interferon regulatory factors (IRFs) are transcription factors which play important roles in regulating the expression of type I interferons (IFNs) and IFN-stimulated genes. IRF9 is one of the IRF family gene members which belongs to the IRF4 subfamily. Mammalian IRF9 has been known to be involved in antiviral responses as the DNA sequence recognition subunit of IFN-stimulated gene factor 3 (ISGF3) complex. In fish, only a few studies investigated the characteristics of IRF9 and the role in IFN signaling. In this study, we identified the IRF9 gene from miiuy croaker (mmiIRF9) and studied its feature and function. Sequence analysis showed the similarity of mmiIRF9 and other fish IRF9 genes. Structural and syntenic analysis showed the conservatism in fish IRF9 genes. The result of expression analysis in normal tissues and infected tissues and macrophages showed that mmiIRF9 expressed in all tested normal tissues and up-regulated expression in liver, kidney and macrophages after stimulated with poly(I:C). Luciferase reporter assays demonstrated the mmiIRF9 can induced IFNα and IFNβ luciferase reporters and the cellular localization of mmiIRF9 was mainly distributed in the cytoplasm in Hela cells. Furthermore, the evolutionary analysis of IRF4 subfamily showed the IRF4 and IRF8 may be the most ancient and conservative genes in the evolution of this subfamily.
Collapse
Affiliation(s)
- Qiong Yang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Junxia Cui
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Weihua Song
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xueyan Zhao
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
41
|
Abstract
MicroRNAs are small endogenous noncoding RNAs implicating in the regulation of diverse biological processes, including proliferation, differentiation, cancer, apoptosis, and viral infections. MicroRNAs regulate gene expression by either mRNA degradation or inhibition of protein translation. Although microRNAs have emerged as important controller involved in regulation of inflammatory response, the microRNA-mediated regulatory mechanism remains less clear in teleost. Here, we report that miR-148 targets MyD88 and down-regulates its expression by inhibition protein translation rather than degradation mRNA in miiuy croaker. Additionally, we found that miR-148 was significantly upregulated in miiuy croaker after treated with Vibro harveyi, as well as LPS. Overexpression of miR-148 inhibited LPS-induced inflammatory cytokines production, such as IL-6 and IL-1β, which then avoid excessive inflammation response. miR-148 has also been identified to suppress NF-κB pathway through targeting and repressing MyD88 expression. Taken together, our findings indicate that miR-148 participates in bacteria-induced inflammatory response and act as a negative regulator for MyD88-mediated NF-κB signaling, which may clarify the mechanism of microRNAs for avoiding excessive inflammation in teleost fish.
Collapse
|
42
|
Chu Q, Sun Y, Cui J, Xu T. Inducible microRNA-214 contributes to the suppression of NF-κB-mediated inflammatory response via targeting myd88 gene in fish. J Biol Chem 2017; 292:5282-5290. [PMID: 28235799 DOI: 10.1074/jbc.m117.777078] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/16/2017] [Indexed: 01/04/2023] Open
Abstract
Upon recognition of bacterial pathogens by pattern recognition receptors, cells are activated to produce pro-inflammatory cytokines and type I IFN by multiple signaling pathways. Every step of the process must be precisely regulated to prevent dysregulation. MicroRNAs (miRNAs) have been shown to be important regulators with profound effects on inflammatory response. Nevertheless, the miRNA-mediated regulatory mechanism remains unclear in fish species. Here, we addressed the role of miiuy croaker miR-214 in the bacteria triggered inflammatory response. miR-214 could significantly be up-regulated by Vibro harveyi and LPS stimulation. Up-regulating miR-214 subsequently inhibits the production of inflammatory cytokines by targeting myd88 to avoid excessive inflammation. Moreover, the negative regulatory mechanism of miR-214 has been demonstrated to be via the myd88-mediated NF-κB pathway. This is the first to focus on miR-214 acting as the negative regulator involved in the bacteria-triggered inflammatory response and thus may provide knowledge on the host-cell regulator responses to microbial infection.
Collapse
Affiliation(s)
- Qing Chu
- From the Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuena Sun
- From the Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Junxia Cui
- From the Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- From the Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|