1
|
Govind S, Lang PO, Bürkle A, Moreno-Villanueva M, Franceschi C, Capri M, Bernard J, Weinberger B, Grubeck-Loebenstein B, Fiegl S, Gonos ES, Sikora E, Jansen E, Dollé MET, Grune T, Breusing N, Aspinall R. Detection of HHV-5 HHV-6a HHV-6b and HHV-7 in the urine: potential use as a non-invasive diagnostic tool for immune profiling. Immun Ageing 2024; 21:84. [PMID: 39609853 PMCID: PMC11606101 DOI: 10.1186/s12979-024-00490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
Decline in immune function with age has been studied extensively, but approaches to immune restoration have been hampered by the lack of simple methods of identifying individuals whose immune system is in decline. Our approach has been to identify individuals whose immune decline has led to a loss of control of common latent viral infections and their consequent reactivation. Viruses excreted in urine were detected and quantified and we believe this approach could provide a 'surrogate marker' for identifying immune compromised individuals. Here we report the detection of human herpes virus (HHV) 5, 6a, 6b and 7 in the urine of healthy individuals over a wide age range and their correlation with T cell receptor excision circle (TREC) data. The results did not show a clear correlation between TREC values and the detection of individual specific viruses or viral load values when measured singly. However, a correlation was found between low TREC values and the detection of several different human herpes viruses in the urine in males. We present evidence suggesting that for males, the detection of three or more different human herpes viruses in the urine could identify individuals with declining immune function as evidenced by their significantly lower TREC levels.
Collapse
Affiliation(s)
- Shelia Govind
- Medicines and Healthcare Products Regulatory Agency (MHRA), South Mimms Laboratories, Potters Bar, UK
| | | | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Box 628, Konstanz, 78457, Germany
| | - María Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Box 628, Konstanz, 78457, Germany
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Box 30, Konstanz, 78457, Germany
| | - Claudio Franceschi
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Miriam Capri
- Department of Medical and Surgical Sciences, University of Bologna-Alma Mater Studiorum, Bologna, Italy
- Alma Mater Research Institute On Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | | | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | | | | | | | - Ewa Sikora
- Polish Academy of Sciences, Warsaw, Poland
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, Utrecht, The Netherlands
| | - Martijn E T Dollé
- National Institute for Public Health and the Environment, Utrecht, The Netherlands
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, 14558, Germany
| | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, 70599, Stuttgart, Germany
| | - Richard Aspinall
- Centre for Intelligent Healthcare, Coventry University, Priory Street, COVENTRY, CV1 5FB, Conventry, UK.
| |
Collapse
|
2
|
Bharani KK, Devarasetti AK, Carey L, Khurana A, Kollipaka R, Hanuman DDV, Chetla VS, Banothu AK. Effects of ashwagandha (Withania somnifera) root extract on aging-related changes in healthy geriatric dogs: A randomized, double-blinded placebo-controlled study. Vet Med Sci 2024; 10:e1556. [PMID: 39078383 PMCID: PMC11288135 DOI: 10.1002/vms3.1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND AND AIM This study aimed to explore the clinical potential of Withania somnifera/ashwagandha root extract (ARE) to mitigate age-related changes in healthy geriatric dogs. We hypothesized that ARE can reduce the effects of advancing age, including physiological changes, immune response decline and susceptibility to diseases, by its immunomodulatory effects. METHODS A randomized, double-blind, placebo-controlled trial was conducted in Telangana, India, from July 2022 to September 2022. Twenty apparently healthy dogs, aged 8 years or older, were enrolled. The dogs were divided into two groups to receive ARE (15 mg/kg, once daily, orally) or a placebo control. Various parameters, including serum cortisol levels, haematological profiles, biochemical markers, antioxidant indicators and anti-inflammatory responses, were assessed at the initiation of study, day 30, and day 60. RESULTS The erythrocyte count and haemoglobin levels were significantly increased with ARE (p < 0.001), whereas leukocyte count decreased (p < 0.05). Moreover, significant decreases in important markers of liver function (alanine aminotransferase, aspartate aminotransferase, albumin and globulin; p < 0.001 at day 60), as well as kidney function markers (creatinine and blood urea nitrogen; p < 0.001 at days 30 and 60), were observed in ARE-treated dogs compared to the placebo control group. In addition, the levels of markers of oxidative stress (superoxide dismutase, catalase, glutathione and malondialdehyde) were significantly modulated by ARE intervention, indicating strong antioxidant effects. Interestingly, serum cortisol levels reduced significantly with ARE (p < 0.001). Compared to baseline, ARE significantly decreased key inflammatory markers, including interferon-γ, tumour necrosis factor-α, nuclear factor kappa light chain enhancer of activated B cells and interleukin-10 (p < 0.001) levels at day 60. CONCLUSION In conclusion, the findings of this study suggest that ARE has adaptogenic properties in healthy geriatric dogs by improving haematological and biochemical profiles, enhancing antioxidant defence, reducing stress and modulating inflammatory responses.
Collapse
Affiliation(s)
- Kala Kumar Bharani
- Department of Veterinary Pharmacology and ToxicologyCollege of Veterinary Science (CVSc)PVNRTVUHyderabadTelanganaIndia
| | - Ashok Kumar Devarasetti
- Department of Veterinary BiochemistryCollege of Veterinary Science (CVSc)PVNRTVUWarangalTelanganaIndia
| | - Latha Carey
- Department of Veterinary Surgery & RadiologyCollege of Veterinary Science (CVSc)PVNRTVUWarangalTelanganaIndia
| | - Amit Khurana
- Department of Veterinary Pharmacology and ToxicologyCollege of Veterinary Science (CVSc), PVNRTVUHyderabadTelanganaIndia
| | | | - Donga Durga Veera Hanuman
- Department of Veterinary Pharmacology and ToxicologyCollege of Veterinary Science (CVSc)PVNRTVUHyderabadTelanganaIndia
| | - Vinaya Sree Chetla
- Department of Veterinary PhysiologyCollege of Veterinary Science (CVSc)PVNRTVUHyderabadTelanganaIndia
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and ToxicologyCollege of Veterinary Science (CVSc)PVNRTVUHyderabadTelanganaIndia
| |
Collapse
|
3
|
Zuleger CL, Schwartz RW, Ong IM, Newton MA, Vail DM, Albertini MR. Development of a next-generation sequencing protocol for the canine T cell receptor beta chain repertoire. Vet Immunol Immunopathol 2024; 268:110702. [PMID: 38183837 PMCID: PMC10872364 DOI: 10.1016/j.vetimm.2023.110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/08/2024]
Abstract
Profiling the T cell receptor (TCR) repertoire using next-generation sequencing has become common in both human and translational research. Companion dogs with spontaneous tumors, including canine melanoma, share several features, e.g., natural occurrence, shared environmental exposures, natural outbred population, and immunocompetence. T cells play an important role in the adaptive immune system by recognizing specific antigens via a surface TCR. As such, understanding the canine T cell response to vaccines, cancer, immunotherapies, and infectious diseases is critically important for both dog and human health. Off-the-shelf commercial reagents, kits and services are readily available for human, non-human primate, and mouse in this context. However, these resources are limited for the canine. In this study, we present a cost-effective protocol for analysis of canine TCR beta chain genes. Workflow can be accomplished in 1-2 days starting with total RNA and resulting in libraries ready for sequencing on Illumina platforms.
Collapse
Affiliation(s)
- Cindy L Zuleger
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rene Welch Schwartz
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Irene M Ong
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael A Newton
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - David M Vail
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark R Albertini
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States; Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States; The Medical Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States.
| |
Collapse
|
4
|
Yan D, Yang J, Ji Z, Wang J, Lu X, Huang Y, Zhong C, Li L. Profiling T cell receptor β-chain in responders after immunization with recombinant hepatitis B vaccine. J Gene Med 2021; 23:e3367. [PMID: 34048625 DOI: 10.1002/jgm.3367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/22/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND T cells with edited T cell receptor β-chain variable (TRBV) are involved in the immune response to recombinant hepatitis B surface antigen (rHBsAg) vaccine and the production of hepatitis B surface antibody (HBsAb). The immune repertoire (IR) profile and mechanism of vaccination positive responders (VPR) with rHBsAg are not fully understood. METHODS The IR of six VPRs (HBsAb+, HbsAg-) with rHBsAg vaccination was established by the high throughput sequencing technique and bioinformatics analysis and compared with those in five vaccination negative responders (VNRs) (HbsAb-, HbsAg-) who were also inoculated with rHBsAg. The repertoire features of the BV, BJ and V (CDR3) J genes and immune diversity in peripheral blood mononuclear cells, respectively, were analyzed for each subject. RESULTS There was no significant difference in sequencing amplification indices of each sample. However, TRBV15/BJ2-3 demonstrated significantly high expression levels in VPR compared to those in the VNR group (both p < 0.05). Further results showed that the BV15/BJ2-5 level was significantly increased for VPR compared to that of VNR group. Interestingly, the motif of CDR3 in TRBV15/BJ2-5 was mostly expressed as "GGETQ" or "GETQ". Additionally, there was no remarkable difference between the two groups of distribution with respect to the different clone expression levels of V (CDR3) J. CONCLUSIONS The features of IR in the VPR and VNR will contribute to the exploration of the mechanism of the positive response to rHBsAg, and also contribute to development of optimized hepatitis B vaccine, in addition to providing a partial interpretation of the VNR who has a relatively low infection with HBV.
Collapse
Affiliation(s)
- Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqing Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yandi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengli Zhong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Cabré M, Planellas M, Ordeix L, Solano-Gallego L. Is signalment associated with clinicopathological findings in dogs with leishmaniosis? THE VETERINARY RECORD 2021; 189:e451. [PMID: 33993495 DOI: 10.1002/vetr.451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/08/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND Canine leishmaniosis (CanL) is a common infectious disease. Age, sex and breed might influence the type of clinical and pathological manifestations that dogs develop. The main objective of this retrospective cross-sectional study was to determine if an association between age, sex, breed and size and the clinical findings of CanL exists. MATERIAL AND METHODS Dogs with a diagnosis of leishmaniosis were enrolled (n = 123). Clinical information, including signalment, clinical signs and laboratory abnormalities, was retrieved from medical records from different veterinary facilities from Catalonia. RESULTS Young dogs developed less frequently systemic signs (p = 0.0046), renal (p = 0.0019) and haematologic (p = 0.0275) abnormalities, while dermatologic signs were more common in young and adult dogs compared with old ones (p = 0.0451). Young dogs showed proteinuria less often than adult and old dogs (p = 0.0029). Young dogs did not present renal azotemia, while old dogs showed occasionally renal azotemia (p = 0.0478). Young dogs were mainly classified as mild-moderate LeishVet clinical stages of the disease, and very rarely as severe-very severe LeishVet clinical stages, compared with adult and old dogs (p = 0.0457). Purebred dogs significantly developed ulcerative dermatitis more frequently than crossbred dogs (p = 0.0460). CONCLUSION This study describes that age is associated with differences in clinicopathological findings of CanL.
Collapse
Affiliation(s)
- Maria Cabré
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marta Planellas
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Ordeix
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laia Solano-Gallego
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
6
|
Palacios-Pedrero MÁ, Osterhaus ADME, Becker T, Elbahesh H, Rimmelzwaan GF, Saletti G. Aging and Options to Halt Declining Immunity to Virus Infections. Front Immunol 2021; 12:681449. [PMID: 34054872 PMCID: PMC8149791 DOI: 10.3389/fimmu.2021.681449] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Immunosenescence is a process associated with aging that leads to dysregulation of cells of innate and adaptive immunity, which may become dysfunctional. Consequently, older adults show increased severity of viral and bacterial infections and impaired responses to vaccinations. A better understanding of the process of immunosenescence will aid the development of novel strategies to boost the immune system in older adults. In this review, we focus on major alterations of the immune system triggered by aging, and address the effect of chronic viral infections, effectiveness of vaccination of older adults and strategies to improve immune function in this vulnerable age group.
Collapse
Affiliation(s)
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tanja Becker
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
7
|
Moskalec OV. Characteristics of the Immunoresponse in Elderly People and Autoimmunity. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Pereira M, Valério-Bolas A, Saraiva-Marques C, Alexandre-Pires G, Pereira da Fonseca I, Santos-Gomes G. Development of Dog Immune System: From in Uterus to Elderly. Vet Sci 2019; 6:E83. [PMID: 31640234 PMCID: PMC6958461 DOI: 10.3390/vetsci6040083] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022] Open
Abstract
Immune system recognize and fight back foreign microorganisms and inner modifications that lead to deficient cell and tissue functions. During a dog's life, the immune system needs to adapt to different physiological conditions, assuring surveillance and protection in a careful and controlled way. Pregnancy alters normal homeostasis, requiring a balance between immunity and tolerance. The embryos and fetus should be protected from infections, while the female dog must tolerate the growing of semi-allografts in her uterus. After birth, newborn puppies are at great risk of developing infectious diseases, because their immune system is in development and immune memory is absent. Passive transfer of immunity through colostrum is fundamental for puppy survival in the first weeks of life, but hampers the development of an active immune response to vaccination. At the end of life, dogs experience a decline in the structure and functional competence of the immune system, compromising the immune responses to novel antigenic challenges, such as infections and vaccines. Therefore, the current article reviews the general processes related to the development of the dog´s immune system, providing an overview of immune activity throughout the dog's life and its implications in canine health, and highlighting priority research goals.
Collapse
Affiliation(s)
- Maria Pereira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), R. da Junqueira 100, 1349-008 Lisboa, Portugal.
- Instituto Politécnico de Portalegre (IPP), Praça do Município 11, 7300-110 Portalegre, Portugal.
- Agrarian School of the Polytechnic Institute of Viseu, Quinta da Alagoa-Estrada de Nelas Ranhados, 3500-606 Viseu, Portugal.
| | - Ana Valério-Bolas
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), R. da Junqueira 100, 1349-008 Lisboa, Portugal.
| | - Cátia Saraiva-Marques
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Av. Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Graça Alexandre-Pires
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Av. Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Isabel Pereira da Fonseca
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Av. Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), R. da Junqueira 100, 1349-008 Lisboa, Portugal.
| |
Collapse
|
9
|
Rieckmann M, Delgobo M, Gaal C, Büchner L, Steinau P, Reshef D, Gil-Cruz C, Horst ENT, Kircher M, Reiter T, Heinze KG, Niessen HW, Krijnen PA, van der Laan AM, Piek JJ, Koch C, Wester HJ, Lapa C, Bauer WR, Ludewig B, Friedman N, Frantz S, Hofmann U, Ramos GC. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J Clin Invest 2019; 129:4922-4936. [PMID: 31408441 DOI: 10.1172/jci123859] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
T cell autoreactivity is a hallmark of autoimmune diseases but can also benefit self-maintenance and foster tissue repair. Herein, we investigated whether heart-specific T cells exert salutary or detrimental effects in the context of myocardial infarction (MI), the leading cause of death worldwide. After screening more than 150 class-II-restricted epitopes, we found that myosin heavy chain alpha (MYHCA) was a dominant cardiac antigen triggering post-MI CD4+ T cell activation in mice. Transferred MYHCA614-629-specific CD4+ T (TCR-M) cells selectively accumulated in the myocardium and mediastinal lymph nodes (med-LN) of infarcted mice, acquired a Treg phenotype with a distinct pro-healing gene expression profile, and mediated cardioprotection. Myocardial Treg cells were also detected in autopsies from patients who suffered a MI. Noninvasive PET/CT imaging using a CXCR4 radioligand revealed enlarged med-LNs with increased cellularity in MI-patients. Notably, the med-LN alterations observed in MI patients correlated with the infarct size and cardiac function. Taken together, the results obtained in our study provide evidence showing that MI-context induces pro-healing T cell autoimmunity in mice and confirms the existence of an analogous heart/med-LN/T cell axis in MI patients.
Collapse
Affiliation(s)
- Max Rieckmann
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany
| | - Murilo Delgobo
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Chiara Gaal
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Lotte Büchner
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Steinau
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany
| | - Dan Reshef
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Ellis N Ter Horst
- Heart Center, Amsterdam UMC, location AMC, Amsterdam, Netherlands.,Department of Pathology and Cardiac Surgery, Amsterdam UMC, location VUmc, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands
| | - Malte Kircher
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Theresa Reiter
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Hans Wm Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam UMC, location VUmc, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands
| | - Paul Aj Krijnen
- Department of Pathology and Cardiac Surgery, Amsterdam UMC, location VUmc, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Jan J Piek
- Heart Center, Amsterdam UMC, location AMC, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands
| | - Charlotte Koch
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technical University Munich, Munich, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Wolfgang R Bauer
- Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan Frantz
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany.,Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany.,Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Gustavo Campos Ramos
- Department of Internal Medicine III, University Clinic Halle, Halle, Germany.,Department of Internal Medicine I, and.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Withers SS, Moore PF, Chang H, Choi JW, McSorley SJ, Kent MS, Monjazeb AM, Canter RJ, Murphy WJ, Sparger EE, Rebhun RB. Multi-color flow cytometry for evaluating age-related changes in memory lymphocyte subsets in dogs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:64-74. [PMID: 29859828 PMCID: PMC6197816 DOI: 10.1016/j.dci.2018.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
While dogs are increasingly being utilized as large-animal models of disease, important features of age-related immunosenescence in the dog have yet to be evaluated due to the lack of defined naïve vs. memory T lymphocyte phenotypes. We therefore performed multi-color flow cytometry on peripheral blood mononuclear cells from young and aged beagles, and determined the differential cytokine production by proposed memory subsets. CD4+ and CD8+ T lymphocytes in aged dogs displayed increased cytokine production, and decreased proliferative capacity. Antibodies targeting CD45RA and CD62L, but less so CD28 or CD44, defined canine cells that consistently exhibited properties of naïve-, central memory-, effector memory-, and terminal effector-like CD4+ and CD8+ T lymphocyte subsets. Older dogs demonstrated decreased frequencies of naïve-like CD4+ and CD8+ T lymphocytes, and an increased frequency of terminal effector-like CD8+ T lymphocytes. Overall findings revealed that aged dogs displayed features of immunosenescence similar to those reported in other species.
Collapse
Affiliation(s)
- Sita S Withers
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Peter F Moore
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hong Chang
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jin W Choi
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, County Road 98 & Hutchison Drive, Davis, CA 95616, USA
| | - Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, County Road 98 & Hutchison Drive, Davis, CA 95616, USA
| | - Michael S Kent
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Arta M Monjazeb
- Comprehensive Cancer Center, Department of Radiation Oncology, School of Medicine, University of California-Davis, 4501 X Street, G-140, Sacramento, CA 95817, USA
| | - Robert J Canter
- Comprehensive Cancer Center, Department of Surgery, School of Medicine, University of California-Davis, 4501 X Street, G-140, Sacramento, CA 95817, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California-Davis, 2921 Stockton Blvd, Sacramento, CA 95716, USA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Robert B Rebhun
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|