1
|
Chen W, Li Z. miR-571 manipulating termite immune response to fungus and showing potential for green management of Copotermes formosanus (Blattodea: Isoptera). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106274. [PMID: 40015866 DOI: 10.1016/j.pestbp.2024.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 03/01/2025]
Abstract
Termites are not merely social insects; they are also globally important insect pests. MicroRNAs (miRNAs) are potential molecular targets for the biological control of termites. However, their role in termite resistance to pathogens, particularly their impact on termite social immune behaviour, remains unclear. In this study, we identified 50 differentially expressed miRNAs in Coptotermes formosanus, a globally economically important termite pest, in response to Metarhizium anisopliae infection. Injecting miR-571 agomir, one of significantly upregulated miRNAs, significantly increased termite mortality without or with M. anisopliae infection (compared to that with M. anisopliae infection alone). Meanwhile, termites infected with M. anisopliae exhibited a significant reduction in the avoidance, trophallaxis, and grooming behaviors. Subsequently, we identified POP5 as a target gene of miR-571 and found that miR-571-POP5 inhibits the termite immune response to M. anisopliae by inhibiting the expression of downstream genes, trypsin-like serine protease and serine protease. Finally, we confirmed that the ingestion of miR-571 agomir also increased the mortality of M. anisopliae-infected termites. Our findings enhance knowledge regarding miRNA role in insect social immunity, pathogen manipulation mechanisms, and optimizing pathogen effectiveness through insect miRNAs. This offers new molecular targets for the biological control of termites.
Collapse
Affiliation(s)
- Weiwen Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhiqiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Yao X, He Y, Zhu C, Yang S, Wu J, Ma F, Jin P. miR-190 restores the innate immune homeostasis of Drosophila by directly inhibiting Tab2 in Imd pathway. Microbes Infect 2024; 26:105399. [PMID: 39084397 DOI: 10.1016/j.micinf.2024.105399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
The Drosophila Imd pathways are well-known mechanisms involved in innate immunity responsible for Gram-negative (G-) bacterial infection. The intensity and durability of immunity need to be finely regulated to keep sufficient immune activation meanwhile avoid excessive immune response. In this study, we firstly demonstrated that miR-190 can downregulate the expression levels of antimicrobial peptides (AMPs) in the Imd immune pathway after Escherichia coli infection using the miR-190 overexpression flies and the miR-190KO/+ flies. Secondly, miR-190 overexpression significantly reduces while miR-190 KO increases Drosophila survival rates upon lethal Enterobacter cloacae infection. Thirdly, we further demonstrated that miR-190 negatively regulates innate immune responses by directly targeting both RA/RB and RC isoforms of Tab2. In addition, the dynamic expression pattern of AMPs (Dpt, AttA, CecA1), miR-190 and Tab2 in the wild-type flies reveals that miR-190 play an important role in Drosophila immune homeostasis restoration at the late stage of E. coli infection. Collectively, our study reveals that miR-190 can downregulate the expression of AMPs by targeting Tab2 and promote immune homeostasis restoration in Drosophila Imd pathway. Our study provides new insights into the regulatory mechanism of animal innate immune homeostasis.
Collapse
Affiliation(s)
- Xiaolong Yao
- Laboratory for Molecular Immunity and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yuqing He
- Laboratory for Molecular Immunity and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Canhe Zhu
- Laboratory for Molecular Immunity and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Shangmin Yang
- Laboratory for Molecular Immunity and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Jing Wu
- Department of Psychology, College of Victoria College, University of Toronto, Toronto, ON, M5R 0A3, Canada
| | - Fei Ma
- Laboratory for Molecular Immunity and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Ping Jin
- Laboratory for Molecular Immunity and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
3
|
Zhou H, Liu L, Pang Y, Xu Y, Wu J, Ma F, Jin P, Zhou X. Relish-mediated C2H2 zinc finger protein IMZF restores Drosophila immune homeostasis via inhibiting the transcription of Imd/Tak1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 170:104138. [PMID: 38762126 DOI: 10.1016/j.ibmb.2024.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
The dysregulation of intensity and duration in innate immunity can result in detrimental effects on the body, emphasizing the crucial need for precise regulation. However, the intricate and accurate nature of innate immunity implies the existence of numerous undiscovered innate immunomodulators, particularly transcription factors. In this study, we have identified a Drosophila C2H2 zinc finger protein CG18262, named Immune-mediated Zinc Finger protein (IMZF), capable of suppressing immune responses of Imd pathway. Mechanistically, IMZF serves as a transcription factor that represses the expression of Imd and Tak1. Intriguingly, our findings also reveal that Relish, an NF-κB transcription factor, positively regulates the expression of IMZF, consequently inhibiting the activation of Imd and Tak1 to prevent an exaggerated immune response. Additionally, we have elucidated the pivotal role played by the Relish-IMZF-Imd/Tak1 axis in restoring immune homeostasis of Drosophila Imd pathway. In summary, our findings not only unveil a novel C2H2 zinc finger immunoregulatory transcription factor, IMZF, along with its specific mechanism of immune regulation, but also shed light on the dual functionality of Relish in different stages of the immune response by modulating distinct effectors. This discovery provides new insights and enlightenment into the complex regulation of Drosophila innate immunity.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yujia Pang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yina Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Jing Wu
- Department of Psychology, College of Victoria College, University of Toronto, Toronto, ON, M5R 0A3, Canada
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Xue Zhou
- School of Chemistry and Biological Engineering, Nanjing Normal University Taizhou College, Taizhou, 225300, China.
| |
Collapse
|
4
|
Huang Y, Wang T, Jiang C, Li S, Zhou H, Li R. Relish-facilitated lncRNA-CR11538 suppresses Drosophila Imd immune response and maintains immune homeostasis via decoying Relish away from antimicrobial peptide promoters. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105098. [PMID: 37956726 DOI: 10.1016/j.dci.2023.105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Innate immunity plays a crucial role in host defense against pathogen invasion and its strength and duration requires precise control. Long non-coding RNAs (lncRNAs) have become important regulators of innate immunity, yet their roles in Drosophila immune responses remain largely unknown. In this study, we identified that the overexpression of lncRNA-CR11538 inhibits the expression of antimicrobial peptides (AMPs) Dpt and AttA in Drosophila upon Escherichia coli (E. coli) infection, and influences the survival rate of flies after E. cloacae infection. Mechanically, lncRNA-CR11538 decoys Relish away from AMPs promoter region. We further revealed that Relish can promote the transcription of lncRNA-CR11538. After analyzing the dynamic expression profile of lncRNA-CR11538 during Imd immune response, we put forward a hypothesis that in the late stage of Imd immune response, lncRNA-CR11538 can be activated by Relish and further decoy Relish away from the AMPs promoter to suppress excessive immune signal and maintain immune homeostasis. This mechanism we proposed provides insights into the complex regulatory networks controlling immune responses in Drosophila and suggests potential targets for therapeutic intervention in diseases involving dysregulated immune responses.
Collapse
Affiliation(s)
- Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Tan Wang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Chun Jiang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China; Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, Jiangsu, PR China
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China; Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, Jiangsu, PR China.
| | - Ruimin Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, PR China.
| |
Collapse
|
5
|
Huang Y, Pang Y, Xu Y, Liu L, Zhou H. The identification of regulatory ceRNA network involved in Drosophila Toll immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105105. [PMID: 38013113 DOI: 10.1016/j.dci.2023.105105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Non-coding RNAs play important roles in the innate immunity of Drosophila, with various lncRNAs and miRNAs identified to maintain Drosophila innate immune homeostasis by regulating protein functions. However, it remains unclear whether interactions between lncRNAs and miRNAs give rise to a ceRNA network. In our previous study, we observed the highest differential expression levels of lncRNA-CR11538, lncRNA-CR33942, and lncRNA-CR46018 in wild-type flies after Gram-positive bacterial infection, prompting us to investigate their role in the regulation of Drosophila Toll immune response through RNA-seq analysis. Herein, our comprehensive bioinformatics analysis revealed that lncRNA-CR11538, lncRNA-CR33942, and lncRNA-CR46018 are involved in defense mechanisms and stimulus response. Moreover, lncRNA-CR11538 and lncRNA-CR46018 can also participate in the metabolic recovery processes following Gram-positive bacterial infection. Subsequently, we employed GSEA screening and RT-qPCR to identify seven miRNAs (miR-957, miR-1015, miR-982, miR-993, miR-1007, miR-193, and miR-978) that may be regulated by these three lncRNAs. Furthermore, we predicted the potential target genes in the Toll signaling pathway for these miRNAs and their interaction with the three lncRNAs using TargetScan and miRanda software and preliminary verification. As a result, we established a potential ceRNA regulatory network for Toll immune responses in Drosophila, comprising three lncRNAs and seven miRNAs. This study provides evidence of a ceRNA regulatory network in Drosophila Toll immune responses and offers novel insights into understanding the regulatory networks involved in the innate immunity of other animals.
Collapse
Affiliation(s)
- Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yujia Pang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China; Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yina Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China; Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Lu T, Ji Y, Chang M, Zhang X, Wang Y, Zou Z. The accumulation of modular serine protease mediated by a novel circRNA sponging miRNA increases Aedes aegypti immunity to fungus. BMC Biol 2024; 22:7. [PMID: 38233907 PMCID: PMC10795361 DOI: 10.1186/s12915-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Mosquitoes transmit many infectious diseases that affect human health. The fungus Beauveria bassiana is a biological pesticide that is pathogenic to mosquitoes but harmless to the environment. RESULTS We found a microRNA (miRNA) that can modulate the antifungal immunity of Aedes aegypti by inhibiting its cognate serine protease. Fungal infection can induce the expression of modular serine protease (ModSP), and ModSP knockdown mosquitoes were more sensitive to B. bassiana infection. The novel miRNA-novel-53 is linked to antifungal immune response and was greatly diminished in infected mosquitoes. The miRNA-novel-53 could bind to the coding sequences of ModSP and impede its expression. Double fluorescence in situ hybridization (FISH) showed that this inhibition occurred in the cytoplasm. The amount of miRNA-novel-53 increased after miRNA agomir injection. This resulted in a significant decrease in ModSP transcript and a significant increase in mortality after fungal infection. An opposite effect was produced after antagomir injection. The miRNA-novel-53 was also knocked out using CRISPR-Cas9, which increased mosquito resistance to the fungus B. bassiana. Moreover, mosquito novel-circ-930 can affect ModSP mRNA by interacting with miRNA-novel-53 during transfection with siRNA or overexpression plasmid. CONCLUSIONS Novel-circ-930 affects the expression level of ModSP by a novel-circ-930/miRNA-novel-53/ModSP mechanism to modulate antifungal immunity, revealing new information on innate immunity in insects.
Collapse
Affiliation(s)
- Tengfei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yannan Ji
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengmeng Chang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Mahanta DK, Bhoi TK, Komal J, Samal I, Nikhil RM, Paschapur AU, Singh G, Kumar PVD, Desai HR, Ahmad MA, Singh PP, Majhi PK, Mukherjee U, Singh P, Saini V, Shahanaz, Srinivasa N, Yele Y. Insect-pathogen crosstalk and the cellular-molecular mechanisms of insect immunity: uncovering the underlying signaling pathways and immune regulatory function of non-coding RNAs. Front Immunol 2023; 14:1169152. [PMID: 37691928 PMCID: PMC10491481 DOI: 10.3389/fimmu.2023.1169152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Multicellular organisms are constantly subjected to pathogens that might be harmful. Although insects lack an adaptive immune system, they possess highly effective anti-infective mechanisms. Bacterial phagocytosis and parasite encapsulation are some forms of cellular responses. Insects often defend themselves against infections through a humoral response. This phenomenon includes the secretion of antimicrobial peptides into the hemolymph. Specific receptors for detecting infection are required for the recognition of foreign pathogens such as the proteins that recognize glucans and peptidoglycans, together referred to as PGRPs and βGRPs. Activation of these receptors leads to the stimulation of signaling pathways which further activates the genes encoding for antimicrobial peptides. Some instances of such pathways are the JAK-STAT, Imd, and Toll. The host immune response that frequently accompanies infections has, however, been circumvented by diseases, which may have assisted insects evolve their own complicated immune systems. The role of ncRNAs in insect immunology has been discussed in several notable studies and reviews. This paper examines the most recent research on the immune regulatory function of ncRNAs during insect-pathogen crosstalk, including insect- and pathogen-encoded miRNAs and lncRNAs, and provides an overview of the important insect signaling pathways and effector mechanisms activated by diverse pathogen invaders.
Collapse
Affiliation(s)
- Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE) - Arid Forest Research Institute (ICFRE-AFRI), Jodhpur, Rajasthan, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| | - Ipsita Samal
- ICAR-National Research Centre on Litchi, Mushahari, Ramna, Muzaffarpur, Bihar, India
| | - R. M. Nikhil
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - Amit Umesh Paschapur
- Crop Protection Division, Indian Council of Agricultural Research (ICAR)-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Gaurav Singh
- The Directorate of Research, Maharana Pratap Horticultural University, Karnal, Haryana, India
| | - P. V. Dinesh Kumar
- Department of Plant Pathology University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - H. R. Desai
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Gujarat, India
| | - Mohammad Abbas Ahmad
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - P. P. Singh
- Department of Entomology, Tirhut College of Agriculture, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - U. Mukherjee
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Pushpa Singh
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Varun Saini
- Department of Entomology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Shahanaz
- Department of Entomology, College of Horticulture Mojerla, Sri Konda Laxman Telengana State Horticultural University, Wanaparthy, Telengana, India
| | - N. Srinivasa
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Yogesh Yele
- School of Crop Health Management Research, Council of Agricultural Research-National Institute of Biotic Stress Management (ICAR)- National Institute of Biotic Stress Management, Raipur, India
| |
Collapse
|
8
|
Kim HK, Kim CJ, Jang D, Lim DH. MicroRNA miR-274-5p Suppresses Found-in-Neurons Associated with Melanotic Mass Formation and Developmental Growth in Drosophila. INSECTS 2023; 14:709. [PMID: 37623419 PMCID: PMC10456003 DOI: 10.3390/insects14080709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023]
Abstract
The hematopoietic system plays a crucial role in immune defense response and normal development, and it is regulated by various factors from other tissues. The dysregulation of hematopoiesis is associated with melanotic mass formation; however, the molecular mechanisms underlying this process are poorly understood. Here, we observed that the overexpression of miR-274 in the fat body resulted in the formation of melanotic masses. Moreover, abnormal activation of the JNK and JAK/STAT signaling pathways was linked to these consequences. In addition to this defect, miR-274 overexpression in the larval fat body decreased the total tissue size, leading to a reduction in body weight. miR-274-5p was found to directly suppress the expression of found-in-neurons (fne), which encodes an RNA-binding protein. Similar to the effects of miR-274 overexpression, fne depletion led to melanotic mass formation and growth reduction. Collectively, miR-274 plays a regulatory role in the fne-JNK signaling axis in melanotic mass formation and growth control.
Collapse
Affiliation(s)
| | | | | | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (H.K.K.); (C.J.K.); (D.J.)
| |
Collapse
|
9
|
Zhang R, Zhang S, Li T, Li H, Zhang H, Zheng W. RNA sequencing identifies an ovary-enriched microRNA, miR-311-3p, involved in ovarian development and fecundity by targeting Endophilin B1 in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2023; 79:688-700. [PMID: 36239581 DOI: 10.1002/ps.7236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis, is a highly invasive pest in East Asia and the Pacific. With the development of pesticides resistance, environment-friendly pesticides are urgently needed. MicroRNAs (miRNAs) are critical regulators of numerous biological processes, including reproduction. Thus, it is significant to identify reproductive-related miRNAs in this notorious pest to facilitate its control, such as RNAi-based biopesticides targeting essential miRNAs. RESULTS A high-throughput sequencing was carried out to identify miRNAs involved in reproduction from the ovary and fat body at four developmental stages [1 day (d), 5, 9, and 13 days post-eclosion] in female B. dorsalis. Results showed that 98 and 74 miRNAs were differentially expressed in ovary and fat body, respectively, during sexual maturation. Gene ontology analysis showed that target genes involved in oogenesis and lipid particle accounted for 33% and 15% of the total targets, respectively. Among these differentially expressed miRNAs, we found by qPCR that miR-311-3p was enriched in the ovary and down-regulated during sexual maturation. Injection of agomir-miR-311-3p resulted in arrested ovarian development, reduced egg deposition and progeny viability. Endophilin B1 was confirmed to be the target of miR-311-3p, via dual-luciferase assay and expression profiling. Knockdown of Endophilin B1 resulted in reproductive defects similar to those caused by injection of miR-311-3p agomir. Thus, miR-311-3p might play a critical role in female reproduction by targeting Endophilin B1. CONCLUSION Our data not only provides knowledge on the abundance of reproductive-related miRNAs and target genes, but also promotes new control strategies for this pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengfeng Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianran Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haozhe Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Qiu JF, Cui WZ, Zhang Q, Dai TM, Liu K, Li JL, Wang YJ, Sima YH, Xu SQ. Temporal transcriptome reveals that circadian clock is involved in the dynamic regulation of immune response to bacterial infection in Bombyx mori. INSECT SCIENCE 2023; 30:31-46. [PMID: 35446483 DOI: 10.1111/1744-7917.13043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The circadian clock plays a critical role in the regulation of host immune defense. However, the mechanistic basis for this regulation is largely unknown. Herein, the core clock gene cryptochrome1 (cry1) knockout line in Bombyx mori, an invertebrate animal model, was constructed to obtain the silkworm with dysfunctional molecular clock, and the dynamic regulation of the circadian clock on the immune responsiveness within 24 h of Staphylococcus aureus infection was analyzed. We found that deletion of cry1 decreased viability of silkworms and significantly reduced resistance of larvae to S. aureus. Time series RNA-seq analysis identified thousands of rhythmically expressed genes, including immune response genes, in the larval immune tissue, fat bodies. Uninfected cry1 knockout silkworms exhibited expression patterns of rhythmically expressed genes similar to wild-type (WT) silkworms infected with S. aureus. However, cry1 knockout silkworms exhibited a seriously weakened response to S. aureus infection. The immune response peaked at 6 and 24 h after infection, during which "transcription storms" occurred, and the expression levels of the immune response genes, PGRP and antimicrobial peptides (AMPs), were significantly upregulated in WT. In contrast, cry1 knockout did not effectively activate Toll, Imd, or NF-κB signaling pathways during the immune adjustment period from 12 to 18 h after infection, resulting in failure to initiate the immune responsiveness peak at 24 h after infection. This may be related to inhibited silkworm fat body energy metabolism. These results demonstrated the dynamic regulation of circadian clock on silkworm immune response to bacterial infection and provided important insights into host antimicrobial defense mechanisms.
Collapse
Affiliation(s)
- Jian-Feng Qiu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Wen-Zhao Cui
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Qiang Zhang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Tai-Ming Dai
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Kai Liu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Jiang-Lan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Yu-Jun Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China, Guangxi Province
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China, Jiangsu Province
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China, Jiangsu Province
| |
Collapse
|
11
|
Abbas MN, Kausar S, Asma B, Ran W, Li J, Lin Z, Li T, Cui H. MicroRNAs reshape the immunity of insects in response to bacterial infection. Front Immunol 2023; 14:1176966. [PMID: 37153604 PMCID: PMC10161253 DOI: 10.3389/fimmu.2023.1176966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
The interaction between bacteria and insects can significantly impact a wide range of different areas because bacteria and insects are widely distributed around the globe. The bacterial-insect interactions have the potential to directly affect human health since insects are vectors for disease transmission, and their interactions can also have economic consequences. In addition, they have been linked to high mortality rates in economically important insects, resulting in substantial economic losses. MicroRNAs (miRNAs) are types of non-coding RNAs involved in regulating gene expression post-transcriptionally. The length of miRNAs ranges from 19 to 22 nucleotides. MiRNAs, in addition to their ability to exhibit dynamic expression patterns, have a diverse range of targets. This enables them to govern various physiological activities in insects, like innate immune responses. Increasing evidence suggests that miRNAs have a crucial biological role in bacterial infection by influencing immune responses and other mechanisms for resistance. This review focuses on some of the most recent and exciting discoveries made in recent years, including the correlation between the dysregulation of miRNA expression in the context of bacterial infection and the progression of the infection. Furthermore, it describes how they profoundly impact the immune responses of the host by targeting the Toll, IMD, and JNK signaling pathways. It also emphasizes the biological function of miRNAs in regulating immune responses in insects. Finally, it also discusses current knowledge gaps about the function of miRNAs in insect immunity, in addition to areas that require more research in the future.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Saima Kausar
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Bibi Asma
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wenhao Ran
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Jingui Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Zini Lin
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
| | - Tiejun Li
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Gastrointestinal Vascular Surgery, The Chongqing Ninth People’s Hospital, Chongqing, China
- *Correspondence: Tiejun Li, ; Hongjuan Cui,
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- *Correspondence: Tiejun Li, ; Hongjuan Cui,
| |
Collapse
|
12
|
Lu MY, Chtarbanova S. The role of micro RNAs (miRNAs) in the regulation of Drosophila melanogaster's innate immunity. Fly (Austin) 2022; 16:382-396. [PMID: 36412256 PMCID: PMC9683055 DOI: 10.1080/19336934.2022.2149204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs ~19-22 nt long which post-transcriptionally regulate gene expression. Their ability to exhibit dynamic expression patterns coupled with their wide variety of targets allows miRNAs to regulate many processes, including the innate immune response of Drosophila melanogaster. Recent studies have identified miRNAs in Drosophila which are differentially expressed during infection with different pathogens as well as miRNAs that may affect immune signalling when differentially expressed. This review provides an overview of miRNAswhich have been identified to play a role in the immune response of Drosophila through targeting of the Toll and IMD signalling pathways and other immune processes. It will also explore the role of miRNAs in fine-tuning the immune response in Drosophila and highlight current gaps in knowledge regarding the role of miRNAs in immunity and areas for further research.
Collapse
Affiliation(s)
- Max Yang Lu
- Department of Biological Sciences, the University of Alabama, Tuscaloosa, AL, USA
| | - Stanislava Chtarbanova
- Department of Biological Sciences, the University of Alabama, Tuscaloosa, AL, USA,Center for Convergent Bioscience & Medicine, University of Alabama, Tuscaloosa, AL, USA,Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, USA,CONTACT Stanislava Chtarbanova Department of Biological Sciences, the University of Alabama, 300, Hackberry Ln, Tuscaloosa, AL-35487, USA
| |
Collapse
|
13
|
Antiviral RNAi Mechanisms to Arboviruses in Mosquitoes: microRNA Profile of Aedes aegypti and Culex quinquefasciatus from Grenada, West Indies. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mosquito-borne arboviruses, such as dengue virus, West Nile virus, Zika virus and yellow fever virus, impose a tremendous cost on the health of populations around the world. As a result, much effort has gone into the study of the impact of these viruses on human infections. Comparatively less effort, however, has been made to study the way these viruses interact with mosquitoes themselves. As ingested arboviruses infect their midgut and subsequently other tissue, the mosquito mounts a multifaceted innate immune response. RNA interference, the central intracellular antiviral defense mechanism in mosquitoes and other invertebrates can be induced and modulated through outside triggers (small RNAs) and treatments (transgenesis or viral-vector delivery). Accordingly, modulation of this facet of the mosquito’s immune system would thereby suggest a practical strategy for vector control. However, this requires a detailed understanding of mosquitoes’ endogenous small RNAs and their effects on the mosquito and viral proliferation. This paper provides an up-to-date overview of the mosquito’s immune system along with novel data describing miRNA profiles for Aedes aegypti and Culex quinquefasiatus in Grenada, West Indies.
Collapse
|
14
|
Wang F, Huang L, Liao M, Dong W, Liu C, Liu Y, Liang Q, Wang W. Integrative analysis of the miRNA-mRNA regulation network in hemocytes of Penaeus vannamei following Vibrio alginolyticus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104390. [PMID: 35276318 DOI: 10.1016/j.dci.2022.104390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Penaeus vannamei is an important cultured shrimp that has high commercial value in the worldwide. However, the industry suffers heavy economic losses each year due to disease outbreaks caused by pathogenic bacteria. In the present study, after Vibrio alginolyticus infection, DNA damage in the hemocytes of the shrimp markedly increased, and autophagy and apoptosis increased significantly. Subsequently, hemocytes were sampled from the control and infected shrimp and sequenced for mRNA and microRNA (miRNA) 24 h after V. alginolyticus infection to better understand the response mechanism to bacterial infection in P. vannamei. We identified 1,874 and 263 differentially expressed mRNAs (DEGs) and miRNAs (DEMs) respectively, and predicted that 997 DEGs were targeted by DEMs. These DEGs were involved in the regulation of multiple signalling pathways, such as Toll and IMD signalling, TGF-beta signalling, MAPK signalling, and cell apoptosis, during Vibrio alginolyticus infection of the shrimp. We identified numerous mRNA-miRNA interactions, which provide insight into the defense mechanism that occur during the antimicrobial process of P. vannamei.
Collapse
Affiliation(s)
- Feifei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Lin Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Meiqiu Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Wenna Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Can Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qingjian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
15
|
Moure UAE, Tan T, Sha L, Lu X, Shao Z, Yang G, Wang Y, Cui H. Advances in the Immune Regulatory Role of Non-Coding RNAs (miRNAs and lncRNAs) in Insect-Pathogen Interactions. Front Immunol 2022; 13:856457. [PMID: 35464405 PMCID: PMC9020863 DOI: 10.3389/fimmu.2022.856457] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Insects are by far the most abundant and diverse living organisms on earth and are frequently prone to microbial attacks. In other to counteract and overcome microbial invasions, insects have in an evolutionary way conserved and developed immune defense mechanisms such as Toll, immune deficiency (Imd), and JAK/STAT signaling pathways leading to the expression of antimicrobial peptides. These pathways have accessory immune effector mechanisms, such as phagocytosis, encapsulation, melanization, nodulation, RNA interference (RNAi), lysis, autophagy, and apoptosis. However, pathogens evolved strategies that circumvent host immune response following infections, which may have helped insects further sophisticate their immune response mechanisms. The involvement of ncRNAs in insect immunity is undeniable, and several excellent studies or reviews have investigated and described their roles in various insects. However, the functional analyses of ncRNAs in insects upon pathogen attacks are not exhaustive as novel ncRNAs are being increasingly discovered in those organisms. This article gives an overview of the main insect signaling pathways and effector mechanisms activated by pathogen invaders and summarizes the latest findings of the immune modulation role of both insect- and pathogen-encoded ncRNAs, especially miRNAs and lncRNAs during insect–pathogen crosstalk.
Collapse
Affiliation(s)
- Ulrich Aymard Ekomi Moure
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China.,Medical Research Institute, Southwest University, Chongqing, China
| | - Tingshan Tan
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Lin Sha
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Xiaoqin Lu
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Zhi Shao
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Guang Yang
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Yi Wang
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China.,Department of Gastrointestinal Surgery, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Zhou H, Li S, Pan W, Wu S, Ma F, Jin P. Interaction of lncRNA-CR33942 with Dif/Dorsal Facilitates Antimicrobial Peptide Transcriptions and Enhances Drosophila Toll Immune Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1978-1988. [PMID: 35379744 DOI: 10.4049/jimmunol.2100658] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/02/2022] [Indexed: 01/08/2023]
Abstract
The Drosophila Toll signaling pathway mainly responds to Gram-positive (G+) bacteria or fungal infection, which is highly conserved with mammalian TLR signaling pathway. Although many positive and negative regulators involved in the immune response of the Toll pathway have been identified in Drosophila, the roles of long noncoding RNAs (lncRNAs) in Drosophila Toll immune responses are poorly understood to date. In this study, our results demonstrate that lncRNA-CR33942 is mainly expressed in the nucleus and upregulated after Micrococcus luteus infection. Especially, lncRNA-CR33942 not only modulates differential expressions of multiple antimicrobial peptide genes but also affects the Drosophila survival rate during response to G+ bacterial infection based on the transiently overexpressing and the knockdown lncRNA-CR33942 assays in vivo. Mechanically, lncRNA-CR33942 interacts with the NF-κB transcription factors Dorsal-related immunity factor/Dorsal to promote the transcriptions of antimicrobial peptides drosomycin and metchnikowin, thus enhancing Drosophila Toll immune responses. Taken together, this study identifies lncRNA-CR33942 as a positive regulator of Drosophila innate immune response to G+ bacterial infection to facilitate Toll signaling via interacting with Dorsal-related immunity factor/Dorsal. It would be helpful to reveal the roles of lncRNAs in Toll immune response in Drosophila and provide insights into animal innate immunity.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and.,Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing, People's Republic of China
| | - Wanwan Pan
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics and Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China; and
| |
Collapse
|
17
|
Zhou H, Ni J, Wu S, Ma F, Jin P, Li S. lncRNA-CR46018 positively regulates the Drosophila Toll immune response by interacting with Dif/Dorsal. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104183. [PMID: 34174242 DOI: 10.1016/j.dci.2021.104183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The Toll signaling pathway is highly conserved from insects to mammals. Drosophila is a model species that is commonly used to study innate immunity. Although many studies have assessed protein-coding genes that regulate the Toll pathway, it is unclear whether long noncoding RNAs (lncRNAs) play regulatory roles in the Toll pathway. Here, we evaluated the expression of the lncRNA CR46018 in Drosophila. Our results showed that this lncRNA was significantly overexpressed after infection of Drosophila with Micrococcus luteus. A CR46018-overexpressing Drosophila strain was then constructed; we expected that CR46018 overexpression would enhance the expression of various antimicrobial peptides downstream of the Toll pathway, regardless of infection with M. luteus. RNA-seq analysis of CR46018-overexpressing Drosophila after infection with M. luteus showed that upregulated genes were mainly enriched in Toll and Imd signaling pathways. Moreover, bioinformatics predictions and RNA-immunoprecipitation experiments showed that CR46018 interacted with the transcription factors Dif and Dorsal to enhance the Toll pathway. During gram-positive bacterial infection, flies overexpressing CR46018 showed favorable survival compared with flies in the control group. Overall, our current work not only reveals a new immune regulatory factor, lncRNA-CR46018, and explores its potential regulatory model, but also provides a new perspective for the effect of immune disorders on the survival of Drosophila melanogaster.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Jiajia Ni
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, PR China.
| | - Shengjie Li
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China.
| |
Collapse
|
18
|
Zhou H, Li S, Wu S, Jin P, Ma F. LncRNA-CR11538 Decoys Dif/Dorsal to Reduce Antimicrobial Peptide Products for Restoring Drosophila Toll Immunity Homeostasis. Int J Mol Sci 2021; 22:ijms221810117. [PMID: 34576280 PMCID: PMC8468853 DOI: 10.3390/ijms221810117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
Avoiding excessive or insufficient immune responses and maintaining homeostasis are critical for animal survival. Although many positive or negative modulators involved in immune responses have been identified, little has been reported to date concerning whether the long non-coding RNA (lncRNA) can regulate Drosophila immunity response. In this study, we firstly discover that the overexpression of lncRNA-CR11538 can inhibit the expressions of antimicrobial peptides Drosomycin (Drs) and Metchnikowin (Mtk) in vivo, thereby suppressing the Toll signaling pathway. Secondly, our results demonstrate that lncRNA-CR11538 can interact with transcription factors Dif/Dorsal in the nucleus based on both subcellular localization and RIP analyses. Thirdly, our findings reveal that lncRNA-CR11538 can decoy Dif/Dorsal away from the promoters of Drs and Mtk to repress their transcriptions by ChIP-qPCR and dual luciferase report experiments. Fourthly, the dynamic expression changes of Drs, Dif, Dorsal and lncRNA-CR11538 in wild-type flies (w1118) at different time points after M. luteus stimulation disclose that lncRNA-CR11538 can help Drosophila restore immune homeostasis in the later period of immune response. Overall, our study reveals a novel mechanism by which lncRNA-CR11538 serves as a Dif/Dorsal decoy to downregulate antimicrobial peptide expressions for restoring Drosophila Toll immunity homeostasis, and provides a new insight into further studying the complex regulatory mechanism of animal innate immunity.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
- Correspondence: ; Tel.: +86-25-85891050
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
| |
Collapse
|
19
|
Ma L, Liu L, Zhao Y, Yang L, Chen C, Li Z, Lu Z. JNK pathway plays a key role in the immune system of the pea aphid and is regulated by microRNA-184. PLoS Pathog 2020; 16:e1008627. [PMID: 32584915 PMCID: PMC7343183 DOI: 10.1371/journal.ppat.1008627] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Different from holometabolous insects, the hemipteran species such as pea aphid Acyrthosiphon pisum exhibit reduced immune responses with the absence of the genes coding for antimicrobial peptide (AMP), immune deficiency (IMD), peptidoglycan recognition proteins (PGRPs), and other immune-related molecules. Prior studies have proved that phenoloxidase (PO)-mediated melanization, hemocyte-mediated phagocytosis, and reactive oxygen species (ROS) participate in pea aphid defense against bacterial infection. Also, the conserved signaling, Jun N-terminal kinase (JNK) pathway, has been suggested to be involved in pea aphid immune defense. However, the precise role of the JNK signaling, its interplay with other immune responses and its regulation in pea aphid are largely unknown. In this study, using in vitro biochemical assays and in vivo bioassays, we demonstrated that the JNK pathway regulated hemolymph PO activity, hydrogen peroxide concentration and hemocyte phagocytosis in bacteria infected pea aphids, suggesting that the JNK pathway plays a central role in regulating immune responses in pea aphid. We further revealed the JNK pathway is regulated by microRNA-184 in response to bacterial infection. It is possible that in common the JNK pathway plays a key role in immune system of hemipteran insects and microRNA-184 regulates the JNK pathway in animals.
Collapse
Affiliation(s)
- Li Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Liu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujie Zhao
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Yang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Caihua Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaofei Li
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
20
|
Li R, Huang Y, Zhang Q, Zhou H, Jin P, Ma F. The miR-317 functions as a negative regulator of Toll immune response and influences Drosophila survival. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 95:19-27. [PMID: 30708026 DOI: 10.1016/j.dci.2019.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/26/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
The miR-317 has been revealed to involve in the reproductive response and the larval ovary morphogenesis of Drosophila. However, whether the miR-317 can also regulate Drosophila innate immune responses, which remains unclear to date. Here we have verified that miR-317 can directly target the 3'UTR of Dif-Rc to down-regulate the expression levels of AMP Drs to negatively control Drosophila Toll immune response in vivo and vitro. Specially, the Dif is an important transcription factor of Toll pathway with four transcripts (Dif-Ra, Dif-Rb, Dif-Rc and Dif-Rd). Our results show that miR-317 only targets to Dif-Rc, but not Dif-Ra/b/d, implying that miRNAs can regulate different isoforms of an alternative splicing gene to fine tune immune responses and maintain homeostasis in post-transcriptional level. Furthermore, we have demonstrated that the miR-317 sponge can restore the expression levels of Drs and Dif-Rc at mRNA and protein levels. Remarkably, during Gram-positive bacterial infection, the overexpressed miR-317 flies have poor survival outcome, whereas the knockout miR-317 flies have favorable survival compared to the control group, respectively, suggesting that the miR-317 might play a key role in Drosophila survival. Taken together, our current works not only reveal an innate immune function and a novel regulation pattern of miR-317, but also provide a new insight into the underlying molecular mechanisms of immunity disorder influencing on Drosophila survival.
Collapse
Affiliation(s)
- Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Qi Zhang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
21
|
Seong KM, Coates BS, Pittendrigh BR. Impacts of Sub-lethal DDT Exposures on microRNA and Putative Target Transcript Expression in DDT Resistant and Susceptible Drosophila melanogaster Strains. Front Genet 2019; 10:45. [PMID: 30804985 PMCID: PMC6370691 DOI: 10.3389/fgene.2019.00045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/21/2019] [Indexed: 01/06/2023] Open
Abstract
Ten constitutively differentially expressed miRNAs were previously described between DDT-resistant 91-R and -susceptible control Drosophila melanogaster strains, and among their predicted target genes were those associated with metabolic DDT resistance mechanisms. The present study evaluated the inducibility of miRNA expression and putative downstream regulation of cytochrome P450s in response to DDT exposure in a time-dependent manner in 91-R and the susceptible Canton-S strain. Specifically, RT-qPCR analysis showed that DDT exposures led to the significant down-regulation (repression) of miR-310-3p, miR-311-3p, miR-312-3p, miR-313-3p, and miR-92a-3p levels in Canton-S. This is contrasted with the lack of significant changes in 91-R at most time-points following DDT exposure. The levels of expression among miRNAs exhibited opposite expression patterns compared to their corresponding putative target cytochrome P450s at the same time points after DDT exposure. Collectively, results from this study suggest that miR-310-3p, miR-311-3p, miR-312-3p, miR-313-3p, and miR-92a-3p might have a potential role in the control of DDT detoxification through the post-transcriptional regulation of target cytochrome P450s in Canton-S. Conversely, the lack of significant changes of these same miRNAs in 91-R following DDT-exposure suggests a possible adaptive mutation that removes repressive control mechanisms. These data are important for the understanding impact of adaptive changes in miRNA expression on post-transcriptional regulatory mechanism involved in the evolution of DDT resistance in 91-R.
Collapse
Affiliation(s)
- Keon Mook Seong
- Department of Entomology, Michigan State University, East Lansing, MI, United States
| | - Brad S Coates
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA, United States
| | - Barry R Pittendrigh
- Department of Entomology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|