1
|
Rogozynski NP, Cadonic IG, Soto-Dávila M, Wong-Benito V, Rodriguez-Ramos T, Craig P, Dixon B. Diploid and triploid Chinook salmon (Oncorhynchus tshawytscha) exhibit differential immunological responses to acute thermal stress. JOURNAL OF FISH DISEASES 2024; 47:e13998. [PMID: 39001637 DOI: 10.1111/jfd.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 10/15/2024]
Abstract
Exposure to temperatures outside of a fish's optimal range results in suppression of the immune system, ultimately leaving aquaculture stocks susceptible to disease outbreaks. This effect is exacerbated in triploid fishes, which demonstrate greater susceptibility to stress than their diploid counterparts. This study investigates the impacts of acute heat stress on the abundance of immune transcripts and proteins in diploid and triploid Chinook salmon (Oncorhynchus tshawytscha), an important finfish crop. This study also demonstrates that acute heat stress induces significant increases in the abundance hsp70, hsp90 and il1b transcripts in the head kidneys, gills and heart ventricles of both diploid and triploid Chinook salmon. Widespread dysregulation of antigen-presentation transcripts was also observed in fish of both ploidies. These results suggest that acute heat stress activates acute-phase responses in Chinook salmon and dysregulates antigen presentation, potentially leaving fish more susceptible to infection. At the protein level, IL-1β was differentially expressed in the head kidney and ventricles of diploid and triploid salmon following heat shock. Differential expression of two tapasin-like proteins in diploid and triploid salmon subjected to heat shock was also observed. Altogether, these data indicate that diploid and triploid Chinook salmon respond differently to acute thermal stressors.
Collapse
Affiliation(s)
- Noah P Rogozynski
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Ivan G Cadonic
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Manuel Soto-Dávila
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | | | | | - Paul Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Liu Y, Bai Y, Chen S, Pu F, Li Y, Chi H, Zheng Z, Xu P, Zhou T. Molecular characterization, expression pattern and immunologic function of CD82a in large yellow croaker ( Larimichthys crocea). Front Immunol 2024; 15:1301877. [PMID: 38370405 PMCID: PMC10869527 DOI: 10.3389/fimmu.2024.1301877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Visceral white spot disease (VWND) caused by Pseudomonas plecoglossicida poses a major threat to the sustainable development of large yellow croaker (Larimichthys crocea) aquaculture. Genome-wide association analysis (GWAS) and RNA-seq research indicated that LcCD82a play an important role in resistance to visceral white spot disease in L. crocea, but the molecular mechanism of LcCD82a response to P. plecoglossicida infection is still unclear. In this study, we cloned and validated the Open Reading Frame (ORF) sequence of LcCD82a and explored the expression profile of LcCD82a in various tissues of L.crocea. In addition, two different transcript variants (LcCD82a-L and LcCD82a-S) of LcCD82a were identified that exhibit alternative splicing patterns after P. plecoglossicida infection, which may be closely related to the immune regulation during pathogenetic process of VWND. In order to explore the function of LcCD82a, we purified the recombinant protein of LcCD82a-L and LcCD82a-S. The bacterial agglutination and apoptosis function analysis showed that LcCD82a may involve in extracellular bacterial recognition, agglutination, and at the same time participate in the process of antigen presentation and induction of cell apoptosis. Collectively, our studies demonstrate that LcCD82a plays a crucial role in regulating apoptosis and antimicrobial immunity.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Sijing Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yaxian Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hongshu Chi
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zaiyu Zheng
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Tao Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Frenette AP, Rodríguez-Ramos T, Zanuzzo F, Ramsay D, Semple SL, Soullière C, Rodríguez-Cornejo T, Heath G, McKenzie E, Iwanczyk J, Bruder M, Aucoin MG, Gamperl AK, Dixon B. Expression of Interleukin-1β protein in vitro,exvivo and in vivo salmonid models. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104767. [PMID: 37406840 DOI: 10.1016/j.dci.2023.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Interleukin-1β (IL-1β) is one of the first cytokines expressed during immune responses, and its levels are affected by many factors, including stress. To date, it has only been possible to measure IL-1β transcript (mRNA) expression quantitatively in fish using qPCR. This is because previous studies that measured IL-1β protein concentrations in these taxa used western blotting, which only provides qualitative data. To advance our knowledge of fish IL-1β biology, and because post-translational processing plays a critical role in the activation of this molecule, we developed a quantitative enzyme-linked immunosorbent assay (ELISA) to accurately measure the concentration of IL-1β protein in several cell cultures and in vivo in salmonids. We compared changes in IL-1β protein levels to the expression of its mRNA. The developed ELISA was quite sensitive and has a detection limit of 12.5 pg/mL. The tools developed, and information generated through this research, will allow for a more accurate and complete understanding of IL-1β's role in the immune response of salmonids.The assay described here has the potential to significantly advance our ability to assess fish health and immune status.
Collapse
Affiliation(s)
- Aaron P Frenette
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Fabio Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada; Universidade Estadual Paulista - UNESP, Centro de Aquicultura da UNESP, Faculdade de Ciências Agrárias e Veterinárias, Via de Acesso Prof. Paulo Donato Castellane, Jaboticabal, CEP, 14884-900, SP, Brazil
| | - Devyn Ramsay
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada
| | - Shawna L Semple
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Cheryl Soullière
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - George Heath
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Emily McKenzie
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Mark Bruder
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
4
|
Wong-Benito V, de Rijke J, Dixon B. Antigen presentation in vertebrates: Structural and functional aspects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104702. [PMID: 37116963 DOI: 10.1016/j.dci.2023.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 06/05/2023]
Abstract
Antigen presentation is a key process of the immune system and is responsible for the activation of T cells. The main characters are the major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules, and accessory proteins that act as chaperones for these glycoproteins. Current knowledge of this process and also the elucidation of the structural features of these proteins, has been extensively reviewed in humans. Unfortunately, this is not the case for non-human species, wherein the function and structural characteristic of the antigen presentation proteins is far from being understood. The majority of previous studies in non-human species, especially in teleost fish and lower vertebrates, are limited to the transcriptomic level, which leads to gaps in the knowledge about the functional process of antigen presentation in these species. This review summarizes what is known so far about antigen presentation pathways in vertebrates from a structural and functional perspective. The focus is not only on the MHC receptors, but also, on the forgotten characters of these pathways such as the proteins of the peptide loading complex, and the MHC-II chaperone invariant chain.
Collapse
Affiliation(s)
| | - Jill de Rijke
- Department of Biology, University of Waterloo, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Canada.
| |
Collapse
|
5
|
Molecular characterization, expression patterns, and subcellular localization of a classical and a novel nonclassical MHC class I α molecules from Japanese eel Anguilla japonica. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Antigen Presentation and Autophagy in Teleost Adaptive Immunity. Int J Mol Sci 2022; 23:ijms23094899. [PMID: 35563287 PMCID: PMC9103719 DOI: 10.3390/ijms23094899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Infectious diseases are a burden for aquaculture. Antigen processing and presentation (APP) to the immune effector cells that fight pathogens is key in the adaptive immune response. At the core of the adaptive immunity that appeared in lower vertebrates during evolution are the variable genes encoding the major histocompatibility complex (MHC). MHC class I molecules mainly present peptides processed in the cytosol by the proteasome and transported to the cell surface of all cells through secretory compartments. Professional antigen-presenting cells (pAPC) also express MHC class II molecules, which normally present peptides processed from exogenous antigens through lysosomal pathways. Autophagy is an intracellular self-degradation process that is conserved in all eukaryotes and is induced by starvation to contribute to cellular homeostasis. Self-digestion during autophagy mainly occurs by the fusion of autophagosomes, which engulf portions of cytosol and fuse with lysosomes (macroautophagy) or assisted by chaperones (chaperone-mediated autophagy, CMA) that deliver proteins to lysosomes. Thus, during self-degradation, antigens can be processed to be presented by the MHC to immune effector cells, thus, linking autophagy to APP. This review is focused on the essential components of the APP that are conserved in teleost fish and the increasing evidence related to the modulation of APP and autophagy during pathogen infection.
Collapse
|
7
|
Song L, Dixon B. Fish and shellfish immunology reports: A new open access journal. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2020; 1:100001. [DOI: 10.1016/j.fsirep.2020.100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Eslamloo K, Caballero-Solares A, Inkpen SM, Emam M, Kumar S, Bouniot C, Avendaño-Herrera R, Jakob E, Rise ML. Transcriptomic Profiling of the Adaptive and Innate Immune Responses of Atlantic Salmon to Renibacterium salmoninarum Infection. Front Immunol 2020; 11:567838. [PMID: 33193341 PMCID: PMC7656060 DOI: 10.3389/fimmu.2020.567838] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
Bacterial Kidney Disease (BKD), which is caused by a Gram-positive, intracellular bacterial pathogen (Renibacterium salmoninarum), affects salmonids including Atlantic salmon (Salmo salar). However, the transcriptome response of Atlantic salmon to BKD remained unknown before the current study. We used a 44K salmonid microarray platform to characterise the global gene expression response of Atlantic salmon to BKD. Fish (~54 g) were injected with a dose of R. salmoninarum (H-2 strain, 2 × 108 CFU per fish) or sterile medium (control), and then head kidney samples were collected at 13 days post-infection/injection (dpi). Firstly, infection levels of individuals were determined through quantifying the R. salmoninarum level by RNA-based TaqMan qPCR assays. Thereafter, based on the qPCR results for infection level, fish (n = 5) that showed no (control), higher (H-BKD), or lower (L-BKD) infection level at 13 dpi were subjected to microarray analyses. We identified 6,766 and 7,729 differentially expressed probes in the H-BKD and L-BKD groups, respectively. There were 357 probes responsive to the infection level (H-BKD vs. L-BKD). Several adaptive and innate immune processes were dysregulated in R. salmoninarum-infected Atlantic salmon. Adaptive immune pathways associated with lymphocyte differentiation and activation (e.g., lymphocyte chemotaxis, T-cell activation, and immunoglobulin secretion), as well as antigen-presenting cell functions, were shown to be differentially regulated in response to BKD. The infection level-responsive transcripts were related to several mechanisms such as the JAK-STAT signalling pathway, B-cell differentiation and interleukin-1 responses. Sixty-five microarray-identified transcripts were subjected to qPCR validation, and they showed the same fold-change direction as microarray results. The qPCR-validated transcripts studied herein play putative roles in various immune processes including pathogen recognition (e.g., tlr5), antibacterial activity (e.g., hamp and camp), regulation of immune responses (e.g., tnfrsf11b and socs1), T-/B-cell differentiation (e.g., ccl4, irf1 and ccr5), T-cell functions (e.g., rnf144a, il13ra1b and tnfrsf6b), and antigen-presenting cell functions (e.g., fcgr1). The present study revealed diverse immune mechanisms dysregulated by R. salmoninarum in Atlantic salmon, and enhanced the current understanding of Atlantic salmon response to BKD. The identified biomarker genes can be used for future studies on improving the resistance of Atlantic salmon to BKD.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Ruben Avendaño-Herrera
- Facultad Ciencias de la Vida, Viña del Mar, and FONDAP Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Santiago, Chile
| | - Eva Jakob
- Cargill Innovation Center-Colaco, Calbuco, Chile
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
9
|
Vo NTK. The sine qua non of the fish invitrome today and tomorrow in environmental radiobiology. Int J Radiat Biol 2020; 98:1025-1033. [PMID: 32816609 DOI: 10.1080/09553002.2020.1812761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fish cell lines, collectively referred to as the fish invitrome, are useful diagnostic tools to study radiation impacts on aquatic health and elucidate radiation mechanisms in fish. This paper will highlight the advantages, discuss the challenges, and propose possible future directions for uses of the fish invitrome in the field of environmental radiobiology. The fish invitrome contains at least 714 fish cell lines. However, only a few of these cell lines have been used to study radiation biology in fish and they represent only 10 fish species. The fish invitrome is clearly not yet explored for its full potential in radiation biology. Evidence suggests that they are useful and, in some cases, irreplaceable in making underlying theories and fundamental concepts in radiation responses in fish. The debate of whether environmental radiation is harmful, presents risks, has no effect on health, or is beneficial is on-going and is one that fish cell lines can help address in a time-effective fashion. Any information obtained with fish cell lines is useful in the framework of environment radiation risk assessments. Radiation threats to aquatic health will continue due to the very likely rise of nuclear energy and medicine in the future. The fish invitrome, in theory, lives forever and can meet new challenges at any given time to provide diagnostic risk analyses pertaining to aquatic health and environmental radiation protection.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Abstract
Based on analysis of available genome sequences, five gene lineages of MHC class I molecules (MHC I-U, -Z, -S, -L and -P) and one gene lineage of MHC class II molecules (MHC II-D) have been identified in Osteichthyes. In the latter lineage, three MHC II molecule sublineages have been identified (MHC II-A, -B and -E). As regards MHC class I molecules in Osteichthyes, it is important to take note of the fact that the lineages U and Z in MHC I genes have been identified in almost all fish species examined so far. Phylogenetic studies into MHC II molecule genes of sublineages A and B suggest that they may be descended from the genes of the sublineage named A/B that have been identified in spotted gar (Lepisosteus oculatus). The sublineage E genes of MHC II molecules, which represent the group of non-polymorphic genes with poor expression in the tissues connected with the immune system, are present in primitive fish, i.e. in paddlefish, sturgeons and spotted gar (Lepisosteus oculatus), as well as in cyprinids (Cyprinidae), Atlantic salmon (Salmo salar), and rainbow trout (Oncorhynchus mykiss). Full elucidation of the details relating to the organisation and functioning of the particular components of the major histocompatibility complex in Osteichthyes can advance the understanding of the evolution of the MHC molecule genes and the immune mechanism.
Collapse
|
11
|
Abram QH, Rodriguez-Ramos T, Bols NC, Katzenback BA, Dixon B. Effect of suboptimal temperature on the regulation of endogenous antigen presentation in a rainbow trout hypodermal fibroblast cell line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 100:103423. [PMID: 31254564 DOI: 10.1016/j.dci.2019.103423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/08/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) face low environmental temperatures over winter months and during extreme low temperature events. Suboptimal temperatures are known to negatively impact the teleost immune system, although there is mixed evidence in rainbow trout as to the effect on the endogenous antigen processing and presentation pathway (EAPP). The EAPP is an important pathway for antiviral defense that involves the presentation of endogenous peptides on the cell surface for recognition by cytotoxic T cells. Using a rainbow trout hypodermal fibroblast (RTHDF) cell line as an in vitro model, we determined that constitutive EAPP transcript levels are not impaired at low temperature, but induction of up-regulation of these transcripts is delayed at the suboptimal temperature following exposure to poly(I:C) or viral haemorrhagic septicaemia virus IVb, which was still able to enter and replicate in the cell line at 4 °C, albeit with reduced efficiency. The delay in the induction of EAPP mRNA level up-regulation following poly(I:C) stimulation coincided with a delay in ifn1 transcript levels and secretion, which is important since interferon-stimulated response elements were identified in the promoter regions of the EAPP-specific members of the pathway, implying that IFN1 is involved in the regulation of these genes. Our results suggest that the ability of rainbow trout to mount an effective immune response to viral pathogens may be lessened at suboptimal temperatures.
Collapse
Affiliation(s)
- Quinn H Abram
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | | | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| |
Collapse
|
12
|
Puente-Marin S, Nombela I, Chico V, Ciordia S, Mena MC, Perez LG, Coll J, Ortega-Villaizan MDM. Potential Role of Rainbow Trout Erythrocytes as Mediators in the Immune Response Induced by a DNA Vaccine in Fish. Vaccines (Basel) 2019; 7:E60. [PMID: 31277329 PMCID: PMC6789471 DOI: 10.3390/vaccines7030060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, fish nucleated red blood cells (RBCs) have been implicated in the response against viral infections. We have demonstrated that rainbow trout RBCs can express the antigen encoded by a DNA vaccine against viral hemorrhagic septicemia virus (VHSV) and mount an immune response to the antigen in vitro. In this manuscript, we show, for the first time, the role of RBCs in the immune response triggered by DNA immunization of rainbow trout with glycoprotein G of VHSV (GVHSV). Transcriptomic and proteomic profiles of RBCs revealed genes and proteins involved in antigen processing and presentation of exogenous peptide antigen via MHC class I, the Fc receptor signaling pathway, the autophagy pathway, and the activation of the innate immune response, among others. On the other hand, GVHSV-transfected RBCs induce specific antibodies against VHSV in the serum of rainbow trout which shows that RBCs expressing a DNA vaccine are able to elicit a humoral response. These results open a new direction in the research of vaccination strategies for fish since rainbow trout RBCs actively participate in the innate and adaptive immune response in DNA vaccination. Based on our findings, we suggest the use of RBCs as target cells or carriers for the future design of novel vaccine strategies.
Collapse
Affiliation(s)
- Sara Puente-Marin
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Ivan Nombela
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Veronica Chico
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Maria Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Luis Garcia Perez
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Julio Coll
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Biotecnología, 28040 Madrid, Spain
| | - Maria Del Mar Ortega-Villaizan
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| |
Collapse
|
13
|
Semple SL, Heath G, Christie D, Braunstein M, Kales SC, Dixon B. Immune stimulation of rainbow trout reveals divergent regulation of MH class II-associated invariant chain isoforms. Immunogenetics 2019; 71:407-420. [PMID: 31037384 DOI: 10.1007/s00251-019-01115-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
Abstract
Major histocompatibility complex (MHC) class II-associated invariant chain is a chaperone responsible for targeting the MHC class II dimer to the endocytic pathway, thus enabling the loading of exogenous antigens onto the MHC class II receptor. In the current study, in vivo and in vitro methods were used to investigate the regulation of the rainbow trout invariant chain proteins S25-7 and INVX, upon immune system activation. Whole rainbow trout and the macrophage/monocyte-like cell line RTS11 were treated with PMA at concentrations shown to induce IL-1β transcripts and homotypic aggregation of RTS11. S25-7 transcript levels remained unchanged in the gill, spleen, and liver and were found to be significantly decreased in head kidney beginning 24 h post-stimulation. Meanwhile, INVX transcript levels remained unchanged in all tissues studied. Both S25-7 and INVX proteins were produced in gill and spleen tissues but their expression was unaffected by immune system stimulation. Surprisingly, neither INVX nor S25-7 protein was detected in the secondary immune organ, the head kidney. Analysis of RTS11 cultures demonstrated that both INVX and S25-7 transcript levels significantly increased at 96 h and 120 h following PMA stimulation before returning to control levels at 168 h. Meanwhile, at the protein level in RTS11, S25-7 remained unchanged while INVX had a significant decrease at 168 h post-stimulation. These results indicate that neither INVX nor S25-7 is upregulated upon immune system activation; thus, teleosts have evolved a system of immune regulation that is different than that found in mammals.
Collapse
Affiliation(s)
- Shawna L Semple
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - George Heath
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - Darah Christie
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - Marsela Braunstein
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - Stephen C Kales
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
14
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
15
|
Grayfer L, Kerimoglu B, Yaparla A, Hodgkinson JW, Xie J, Belosevic M. Mechanisms of Fish Macrophage Antimicrobial Immunity. Front Immunol 2018; 9:1105. [PMID: 29892285 PMCID: PMC5985312 DOI: 10.3389/fimmu.2018.01105] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Overcrowding conditions and temperatures shifts regularly manifest in large-scale infections of farmed fish, resulting in economic losses for the global aquaculture industries. Increased understanding of the functional mechanisms of fish antimicrobial host defenses is an important step forward in prevention of pathogen-induced morbidity and mortality in aquaculture setting. Like other vertebrates, macrophage-lineage cells are integral to fish immune responses and for this reason, much of the recent fish immunology research has focused on fish macrophage biology. These studies have revealed notable similarities as well as striking differences in the molecular strategies by which fish and higher vertebrates control their respective macrophage polarization and functionality. In this review, we address the current understanding of the biological mechanisms of teleost macrophage functional heterogeneity and immunity, focusing on the key cytokine regulators that control fish macrophage development and their antimicrobial armamentarium.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Baris Kerimoglu
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | | | - Jiasong Xie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|