1
|
Weiland-Bräuer N, Koutsouveli V, Langfeldt D, Schmitz RA. First insights into the Aurelia aurita transcriptome response upon manipulation of its microbiome. Front Microbiol 2023; 14:1183627. [PMID: 37637120 PMCID: PMC10448538 DOI: 10.3389/fmicb.2023.1183627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The associated diverse microbiome contributes to the overall fitness of Aurelia aurita, particularly to asexual reproduction. However, how A. aurita maintains this specific microbiome or reacts to manipulations is unknown. Methods In this report, the response of A. aurita to manipulations of its native microbiome was studied by a transcriptomics approach. Microbiome-manipulated polyps were generated by antibiotic treatment and challenging polyps with a non-native, native, and potentially pathogenic bacterium. Total RNA extraction followed by RNAseq resulted in over 155 million reads used for a de novo assembly. Results The transcriptome analysis showed that the antibiotic-induced change and resulting reduction of the microbiome significantly affected the host transcriptome, e.g., genes involved in processes related to immune response and defense mechanisms were highly upregulated. Similarly, manipulating the microbiome by challenging the polyp with a high load of bacteria (2 × 107 cells/polyp) resulted in induced transcription of apoptosis-, defense-, and immune response genes. A second focus was on host-derived quorum sensing interference as a potential defense strategy. Quorum Quenching (QQ) activities and the respective encoding QQ-ORFs of A. aurita were identified by functional screening a cDNA-based expression library generated in Escherichia coli. Corresponding sequences were identified in the transcriptome assembly. Moreover, gene expression analysis revealed differential expression of QQ genes depending on the treatment, strongly suggesting QQ as an additional defense strategy. Discussion Overall, this study allows first insights into A. aurita's response to manipulating its microbiome, thus paving the way for an in-depth analysis of the basal immune system and additional fundamental defense strategies.
Collapse
Affiliation(s)
| | - Vasiliki Koutsouveli
- GEOMAR Helmholtz Center for Ocean Research Kiel, Düsternbrooker Weg, Kiel, Germany
| | | | - Ruth A. Schmitz
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
2
|
Sequence, Expression, and Anti-GCRV Function of the Ferritin from the Grass Carp, Ctenopharyngodon idellus. Int J Mol Sci 2022; 23:ijms23126835. [PMID: 35743279 PMCID: PMC9224801 DOI: 10.3390/ijms23126835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Ferritin possesses an immune function to defend against pathogen infection. To elucidate the immunity-protecting roles of ferritin from Ctenopharyngodon idellus (Ciferritin) against virus infection, the cDNA and promoter sequences of Ciferritin were determined, and the correlations between Ciferrtin expressions and promoter methylation levels were analyzed. In addition, the functional role of Ciferrtin on GCRV (grass carp reovirus) infection was assessed. The full-length cDNA of Ciferritin is 1053 bp, consists of a 531 bp open-reading frame, and encodes 176 amino acids. Ciferritin showed the highest sequence identity with the ferritin middle subunit of Mylopharyngodon piceus (93.56%), followed by the subunits of Megalobrama amblycephala and Sinocyclocheilus rhinocerous. Ciferritin contains a conserved ferritin domain (interval: 10−94 aa), and the caspase recruitment domain (CARD) and Rubrerythrin domain were also predicted. In the spleen and kidney, significantly higher Ciferritin expressions were observed at 6, 12, 24, or 168 h post GCRV infection than those in the PBS injection group (p < 0.05). The Ciferrtin expression level in the progeny of maternal-immunized grass carp was significantly higher than that in the progeny of common grass carp (p < 0.05). Ciferritin promoter methylation level in the progeny from common grass carp was 1.27 ± 0.15, and in the progeny of the maternal-immunized group was 1.00 ± 0.14. In addition, methylation levels of “CpG9” and “CpG10” loci were significantly lower in the progeny of maternal-immunized fish than those in the common group. Except for the “CpG5”, methylation levels of all other detected “CpG” loci negatively correlated with Ciferritin expression levels. Furthermore, the total methylation level of “CpG1−10” negatively correlated with the Ciferritin expressions. The Ciferritin expression level was significantly up-regulated, and the VP7 protein levels were significantly reduced, at 24 h post GCRV infection in the Ciferritin over-expression cells (p < 0.05). The results from the present study provide sequence, epigenetic modification and expression, and anti-GCRV functional information of Ciferritin, which provide a basis for achieving resistance to GCRV in grass carp breeding.
Collapse
|
3
|
Roles of Proteins/Enzymes from Animal Sources in Food Quality and Function. Foods 2021; 10:foods10091988. [PMID: 34574100 PMCID: PMC8465642 DOI: 10.3390/foods10091988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
Animal proteins are good sources of protein for human, due to the composition of necessary amino acids. The quality of food depends significantly on the properties of protein inside, especially the gelation, transportation, and antimicrobial properties. Interestingly, various kinds of molecules co-exist with proteins in foodstuff, and the interactions between these can significantly affect the food quality. In food processing, these interactions have been used to improve the texture, color, taste, and shelf-life of animal food by affecting the gelation, antioxidation, and antimicrobial properties of proteins. Meanwhile, the binding properties of proteins contributed to the nutritional properties of food. In this review, proteins in meat, milk, eggs, and fishery products have been summarized, and polysaccharides, polyphenols, and other functional molecules have been applied during food processing to improve the nutritional and sensory quality of food. Specific interactions between functional molecules and proteins based on the crystal structures will be highlighted with an aim to improve the food quality in the future.
Collapse
|
4
|
Liu LK, Liu MJ, Li DL, Liu HP. Recent insights into anti-WSSV immunity in crayfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103947. [PMID: 33253753 DOI: 10.1016/j.dci.2020.103947] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
White spot syndrome virus (WSSV) is currently the most severely viral pathogen for farmed crustaceans such as shrimp and crayfish, which has been causing huge economic losses for crustaceans farming worldwide every year. Unfortunately, study on the molecular mechanisms of WSSV has been restricted by the lack of crustacean cell lines for WSSV propagation as well as the incompletely annotated genomes for host species, resulting in limited elucidation for WSSV pathogenesis at present. In addition to the findings of anti-WSSV response in shrimp, some of novel cellular events involved in WSSV infection have been recently revealed in crayfish, including endocytosis and intracellular transport of WSSV, innate immune pathways in response to WSSV infection, and regulation of viral gene expression by host genes. Despite these advances, many fundamental gaps in WSSV pathogenesis are still remaining, for example, how WSSV genome enters into nucleus and how the progeny virions are fully assembled in the host cell nucleus. In this review, recent findings in WSSV infection mechanism and the antiviral immunity against WSSV in crayfish are summarized and discussed, which may provide us a better understanding of the WSSV pathogenesis as well as new ideas for the target design of antiviral drugs against WSSV in crustaceans farming.
Collapse
Affiliation(s)
- Ling-Ke Liu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China
| | - Man-Jun Liu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China
| | - Dong-Li Li
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China
| | - Hai-Peng Liu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
5
|
Xu Z, Liu A, Li S, Wang G, Ye H. Hepatopancreas immune response during molt cycle in the mud crab, Scylla paramamosain. Sci Rep 2020; 10:13102. [PMID: 32753724 PMCID: PMC7403367 DOI: 10.1038/s41598-020-70139-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
Molt is a critical developmental process in crustaceans. Recent studies have shown that the hepatopancreas is an important source of innate immune molecules, yet hepatopancreatic patterns of gene expression during the molt cycle which may underlie changes in immune mechanism are unknown. In this study, we performed Illumina sequencing for the hepatopancreas of the mud crab, Scylla paramamosain during molt cycle (pre-molt stage, post-molt stage, and inter-molt stage). A total of 44.55 Gb high-quality reads were obtained from the normalized cDNA of hepatopancreas. A total of 70,591 transcripts were assembled; 55,167 unigenes were identified. Transcriptomic comparison revealed 948 differentially expressed genes (DEGs) in the hepatopancreas from the three molt stages. We found that genes associated with immune response patterns changed in expression during the molt cycle. Antimicrobial peptide genes, inflammatory response genes, Toll signaling pathway factors, the phenoloxidase system, antioxidant enzymes, metal-binding proteins and other immune related genes are significantly up-regulated at the post-molt stage and inter-molt stage compared with the pre-molt stage, respectively. These genes are either not expressed or are expressed at low levels at the pre-molt stage. To our knowledge, this is the first systematic transcriptome analysis of genes capable of mobilizing a hepatopancreas immune response during the molt cycle in crustaceans, and this study will contribute to a better understanding of the hepatopancreas immune system and mud crab prophylactic immune mechanisms at the post-molt stage.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - An Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Guizhong Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
6
|
Moreira AC, Mesquita G, Gomes MS. Ferritin: An Inflammatory Player Keeping Iron at the Core of Pathogen-Host Interactions. Microorganisms 2020; 8:microorganisms8040589. [PMID: 32325688 PMCID: PMC7232436 DOI: 10.3390/microorganisms8040589] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Iron is an essential element for virtually all cell types due to its role in energy metabolism, nucleic acid synthesis and cell proliferation. Nevertheless, if free, iron induces cellular and organ damage through the formation of free radicals. Thus, iron levels must be firmly controlled. During infection, both host and microbe need to access iron and avoid its toxicity. Alterations in serum and cellular iron have been reported as important markers of pathology. In this regard, ferritin, first discovered as an iron storage protein, has emerged as a biomarker not only in iron-related disorders but also in inflammatory diseases, or diseases in which inflammation has a central role such as cancer, neurodegeneration or infection. The basic research on ferritin identification and functions, as well as its role in diseases with an inflammatory component and its potential as a target in host-directed therapies, are the main considerations of this review.
Collapse
Affiliation(s)
- Ana C. Moreira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.); (M.S.G.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| | - Gonçalo Mesquita
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.); (M.S.G.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (G.M.); (M.S.G.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Masuda T, Zang J, Zhao G, Mikami B. The first crystal structure of crustacean ferritin that is a hybrid type of H and L ferritin. Protein Sci 2019; 27:1955-1960. [PMID: 30099791 DOI: 10.1002/pro.3495] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Ferritin, a ubiquitous iron storage protein, has a crucial role in innate immunity in arthropods, which have no adaptive immune system. Arthropods are thought to have two types of ferritin molecules: the secreted type and the cytosolic type. Here, we present the first crystal structure of ferritin from crustacean, kuruma prawn (Marsupenaeus japonicus), at 1.16 Å resolution. This shrimp ferritin (MjFer) is the cytosolic type, and its structure shows well-conserved ferritin fold composed of a 4-helix bundle that assembles into a cage-like 24-mer. The structure of MjFer was more similar to those of human and vertebrate ferritins than to that of the secreted-type arthropod ferritin from an insect. MjFer possesses both a ferroxidase site and a nucleation site, which are the main characteristics of vertebrate H and L chain ferritins, respectively. The first crystal structure of crustacean ferritin, MjFer, has exceptionally high quality that provides the detailed structural information of metal moving pathway in ferritin.
Collapse
Affiliation(s)
- Taro Masuda
- Laboratory of Food Quality Design and Development, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Kyoto, 611-0011, Japan
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, 100083, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, 100083, China
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Zheng SC, Chang XJ, Li WD, Wang H, Guo LM, Wang KJ, Liu HP. A novel RING finger protein CqRNF152-like with self-ubiquitination activity inhibits white spot syndrome virus infection in a crustacean Cherax quadricarinatus. FISH & SHELLFISH IMMUNOLOGY 2019; 94:934-943. [PMID: 31600596 DOI: 10.1016/j.fsi.2019.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Really Interesting New Gene (RING) finger proteins are highly conserved molecules that participate in a variety of biological processes such as regulation of development, apoptosis and antiviral immunity in vertebrates. However, the functions of RING finger proteins are still poorly understood in crustaceans. Previously, we found that the transcript of a homolog of RING finger protein 152 (CqRNF152-like) was up-regulated in a differentially expressed transcriptome library of the haematopietic tissue (Hpt) cells from red claw crayfish Cherax quadricarinatus upon white spot syndrome virus (WSSV) infection, which is one of the most devastating viral diseases for crustaceans like shrimp and crayfish. The full-length cDNA sequence of CqRNF152-like was then identified with 975 bp, including an ORF of 685 bp that encoded a 195 amino acids protein, a 5'- UTR of 180 bp, and a 3'-UTR with a poly (A) tail of 207 bp. The conserved domain prediction showed that CqRNF152-like contained a conserved RING-finger domain. Gene expression analysis showed that CqRNF152-like was distributed in all tissues examined and the transcript is significantly up-regulated after WSSV challenge both in vivo in Hpt tissue and in vitro in cultured Hpt cells. Furthermore, the transcripts of both an immediate early gene ie1 and a late envelope protein gene vp28 of WSSV were clearly increased in the Hpt tissues, hemocytes and cultured Hpt cells after gene silencing of CqRNF152-like, which were further proved to be significantly decreased after overloading of recombinant CqRNF152-like protein in Hpt cell cultures. Meanwhile, CqRNF152-like was found to bind with WSSV envelope protein VP28 by proteins pull-down assay. Similar to most of RNF proteins, CqRNF152-like protein sequence contained a conserved RING-finger domain and showed self-ubiquitination activity in a RING finger domain dependent manner. Taken together, CqRNF152-like is likely to function as an antiviral molecular against WSSV infection through interaction with the envelope protein VP28 in a crustacean C. quadricarinatus. This is the first report that a RING finger protein with directly antiviral functions via interaction with viral protein and self-ubiquitination activity in crustacean, which sheds new light on the molecular mechanism of WSSV infection and the control of white spot disease.
Collapse
Affiliation(s)
- Shu-Cheng Zheng
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xue-Jiao Chang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Wei-Dong Li
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hao Wang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Li-Mei Guo
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
9
|
Tang T, Yang Z, Li J, Yuan F, Xie S, Liu F. Identification of multiple ferritin genes in Macrobrachium nipponense and their involvement in redox homeostasis and innate immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 89:701-709. [PMID: 31004801 DOI: 10.1016/j.fsi.2019.04.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Based on the transcriptome database, we screened out four ferritin subunit genes (MnFer2-5) from the oriental river prawn Macrobrachium nipponense, which encode two non-secretory and two secretory peptides. MnFer2 and 4 possess a strictly conserved ferroxidase site, and MnFer3 has a non-typical ferroxidase site. MnFer5 seems to be a number of ferritin families, which has a distinct dinuclear metal binding motif, but lacks an iron ion channel, a ferroxidase site and a nucleation site. Diverse tissue-specific transcriptions of the four genes indicate their functional diversity in the prawn. Among them, MnFer2 is mainly expressed in hepatopancreas and intestines, MnFer3 and 4 are predominantly expressed in gills, and MnFer5 is widely expressed in various tissues with high presence in intestines, hepatopancreas and haemocytes. The transcription of all the four MnFer genes can be strongly induced by doxorubicin, indicating the involvement of these ferritin subunits in protection from oxidative stress. Upon Aeromonas hydrophila infection, only MnFer5 is persistently up-regulated, while other subunits including MnFer2-4 are down-regulated during the early stage, followed by recovery and even a slight increase at 48 h post bacterial challenge. Moreover, the iron binding capacity of recombinant MnFer2 is also demonstrated in vitro. The E. coli expressing MnFer2 displays increased resistance to hydrogen peroxidase cytotoxicity. These results suggest a protective role of ferritins from M. nipponense in iron homeostasis, redox biology and antibacterial immunity and shed light on the molecule evolution of crustacean ferritin subunits.
Collapse
Affiliation(s)
- Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zilan Yang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jing Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Fengyu Yuan
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Song Xie
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
10
|
Yang H, Liu Z, Jiang Q, Xu J, An Z, Zhang Y, Xiong D, Wang L. A novel ferritin gene from Procambarus clarkii involved in the immune defense against Aeromonas hydrophila infection and inhibits WSSV replication. FISH & SHELLFISH IMMUNOLOGY 2019; 86:882-891. [PMID: 30553892 DOI: 10.1016/j.fsi.2018.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Ferritin is a protein related to the storage of iron and widely distributed in animals. It participates in many biological process, including antioxidation, cell activation, angiogenesis, regulation of iron metabolic balance and immune defense. In the present study, a novel ferritin gene was identified from red swamp crayfish Procambarus clarkii, with a cDNA sequence encoding a predicted 221 amino-acid residues. The ferritin protein contains a 19-residue signal peptide and 145-residue classic ferritin domain. The NJ phylogenetic analysis showed PcFer clustered with other crustacean peptides. The recombinant PcFer protein was produced and purified in E. coli, and the anti-rabbit polyclonal antibody was obtained. The rPcFer exhibited iron binding activity at a dose-dependent effect. The qPCR and western blot analysis revealed that PcFer was highly expressed in hemocytes, hepatopancreas, and gills. After challenged with WSSV and Aeromonas hydrophila, the mRNA and protein expression patterns of PcFer were significantly up-regulated in hemocytes and hepatopancreas. dsRNA interfering technique was utilized to silence the expression of PcFer gene. The WSSV copy number in PcFer silenced shrimp was much higher than that in the control group. The present study indicated that PcFer was involved in the immune defense against WSSV and Aeromonas hydrophila, and might inhibit WSSV replication in P. clarkii. These results will provide important data support for further study of the functional role of the ferritin gene.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Zhe Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Junjie Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhenhua An
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Dongmei Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
11
|
Liu Y, Zhang YH, Li T, Cao XT, Zhou Y, Yuan JF, Gu ZM, Lan JF. PcLys-i3, an invertebrate lysozyme, is involved in the antibacterial immunity of the red swamp crayfish, Procambarus clarkii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:109-115. [PMID: 29909090 DOI: 10.1016/j.dci.2018.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Antimicrobial peptides (AMPs) play important roles in innate immunity against pathogens and lysozymes are a particularly type of AMP. Lysozymes are hydrolytic enzymes that are characterized by their ability to cleave the beta-(1,4)-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, which is the major bacterial cell wall polymer. In this work, a lysozyme was identified from Procambarus clarkii and designated PcLys-i3. Quantitative RT-PCR was used to analyze the tissue distribution and expression profiles of PcLys-i3. PcLys-i3 was present in all tested tissues and had high expression levels in gills, stomach and intestine. The expression levels of PcLys-i3 were up-regulated in gills and intestine after challenge with Vibrio parahaemolyticus, Staphylococcus aureus and Aeromonas hydrophila. PcLys-i3 and PcFer proteins can enhance the bacterial elimination in crayfish, whereas the bacterial elimination was weakened when the expression level of PcLys-i3 or PcFer RNAs was suppressed by RNAi. Recombinant PcLys-i3 and PcFer significantly reduced the mortality of crayfish with bacterial infections. Further study found that PcLys-i3 could interact with PcFer in vitro. Finally, the PcLys-i3 and PcFer proteins could bind to bacteria and inhibit bacterial replication. These results suggest that both PcLys-i3 and PcFer play important roles in the antibacterial immunity of red swamp crayfish.
Collapse
Affiliation(s)
- Yan Liu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ying-Hao Zhang
- College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Tong Li
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiao-Tong Cao
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yang Zhou
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jun-Fa Yuan
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ze-Mao Gu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiang-Feng Lan
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|