1
|
Wang Z, Guo P, Hu L, Hua G, Yang Y, Zheng H, Fang H, Xia Q, Zhao P. Fibroinase plays a vital role in silk gland degeneration by regulating autophagy and apoptosis in the silkworm, Bombyx mori. Int J Biol Macromol 2024; 277:134312. [PMID: 39084448 DOI: 10.1016/j.ijbiomac.2024.134312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The silkworm is an incredibly valuable insect that produces silk through its silk gland. Within this organ, Fibroinase has been identified and named due to its ability to fibroin degradation. The expression of Fibroinase in the silk gland significantly increases during the larval-pupal stage, which might be associated with the degeneration of the silk gland. In this study, Fibroinase was overexpressed and knocked down specifically both in the middle and posterior silk glands, respectively, using transgenic technology. The investigation of silk gland development in these transgenic silkworms showed that Fibroinase plays a direct role in accelerating silk gland degeneration. The staining analyses performed in the silk glands of transgenic silkworms suggest that Fibroinase is involved in the processes of autophagy and apoptosis during silk gland degeneration. Further experiments demonstrated that Fibroinase, acting as a lysosomal regulator, negatively regulates autophagy via the mTOR (mechanistic target of rapamycin) pathway. Moreover, during apoptosis, Fibroinase could activate Caspase3 by increasing the activity of BmCaspase1, ultimately accelerating the apoptosis process. These findings enhance our understanding of the physiological role of Fibroinase in promoting silk gland degeneration, which plays a role in breaking down proteins in the silk gland and coordinating the regulation of autophagy and apoptosis.
Collapse
Affiliation(s)
- Zhan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Pengchao Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Lan Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Guosheng Hua
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Haogang Zheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Huan Fang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Muhammad A, Sun C, Shao Y. The humoral immune response of the lepidopteran model insect, silkworm Bombyx mori L., to microbial pathogens. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100097. [PMID: 39364346 PMCID: PMC11447326 DOI: 10.1016/j.cris.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Insects are valuable models for studying innate immunity and its role in combating infections. The silkworm Bombyx mori L., a well-studied insect model, is susceptible to a range of pathogens, including bacteria, fungi, viruses, and microsporidia. Their susceptibility makes it a suitable model for investigating host-pathogen interactions and immune responses against infections and diseases. This review focuses on the humoral immune response and the production of antimicrobial peptides (AMPs), the phenoloxidase (PO) system, and other soluble factors that constitute the primary defense of silkworms against microbial pathogens. The innate immune system of silkworms relies on pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs), which then activate various immune pathways including Imd, Toll, JAK/STAT, and RNA interference (RNAi). Their activation triggers the secretion of AMPs, enzymatic defenses (lysozyme and PO), and the generation of reactive oxygen species (ROS). Collectively, these pathways work together to neutralize and eliminate pathogens, thereby contributing to the defense mechanism of silkworms. Understanding the innate immunity of silkworms can uncover conserved molecular pathways and key immune components shared between insects and vertebrates. Additionally, it can provide valuable insights for improving sericulture practices, developing strategies to control diseases affecting silk production, and providing a theoretical foundation for developing pest control measures.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
3
|
Christapher PV, Ganeson T, Chinni SV, Parasuraman S. Transgenic Rodent Models in Toxicological and Environmental Research: Future Perspectives. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221135691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The coexistence of humans and animals has existed for centuries. Over the past decade, animal research has played a critical role in drug development and discovery. More and more diverse animals, including transgenic animals, are used in basic research than in applied research. Transgenic animals are generated using molecular genetic techniques to add functional genes, alter gene products, delete genes, insert reporter genes into regulatory sequences, replace or repair genes, and make changes in gene expression. These genetically engineered animals are unique tools for studying a wide range of biomedical issues, allowing the exhibition of specific genetic alterations in various biological systems. Over the past two decades, transgenic animal models have played a critical role in improving our understanding of gene regulation and function in biological systems and human disease. This review article aims to highlight the role of transgenic animals in pharmacological, toxicological, and environmental research. The review accounts for various types of transgenic animals and their appropriateness in multiple types of studies.
Collapse
Affiliation(s)
- Parayil Varghese Christapher
- Department of Pharmacology, Al Shifa College of Pharmacy, Poothavanam post, Kizhattur, Perinthalmanna, Malappuram District, Kerala, India
| | - Thanapakiam Ganeson
- Department of Pharmaceutical Technology, Faculty of Pharmacy, AIMST University, Bedong, Malaysia
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | |
Collapse
|
4
|
Transgenic Silkworms Overexpressing Relish and Expressing Drosomycin Confer Enhanced Immunity to Multiple Pathogens. Mol Biotechnol 2022; 64:711-724. [DOI: 10.1007/s12033-021-00438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
|
5
|
Jiang L. Insights Into the Antiviral Pathways of the Silkworm Bombyx mori. Front Immunol 2021; 12:639092. [PMID: 33643323 PMCID: PMC7904692 DOI: 10.3389/fimmu.2021.639092] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
The lepidopteran model silkworm, Bombyx mori, is an important economic insect. Viruses cause serious economic losses in sericulture; thus, the economic importance of these viruses heightens the need to understand the antiviral pathways of silkworm to develop antiviral strategies. Insect innate immunity pathways play a critical role in the outcome of infection. The RNA interference (RNAi), NF-kB-mediated, immune deficiency (Imd), and stimulator of interferon gene (STING) pathways, and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway are the major antiviral defense mechanisms, and these have been shown to play important roles in the antiviral immunity of silkworms. In contrast, viruses can modulate the prophenol oxidase (PPO), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and the extracellular signal-regulated kinase (ERK) signaling pathways of the host to elevate their proliferation in silkworms. In this review, we present an overview of the current understanding of the main immune pathways in response to viruses and the signaling pathways modulated by viruses in silkworms. Elucidation of these pathways involved in the antiviral mechanism of silkworms furnishes a theoretical basis for the enhancement of virus resistance in economic insects, such as upregulating antiviral immune pathways through transgenic overexpression, RNAi of virus genes, and targeting these virus-modulated pathways by gene editing or inhibitors.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Jiang L, Goldsmith MR, Xia Q. Advances in the Arms Race Between Silkworm and Baculovirus. Front Immunol 2021; 12:628151. [PMID: 33633750 PMCID: PMC7900435 DOI: 10.3389/fimmu.2021.628151] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Insects are the largest group of animals. Nearly all organisms, including insects, have viral pathogens. An important domesticated economic insect is the silkworm moth Bombyx mori. B. mori nucleopolyhedrovirus (BmNPV) is a typical baculovirus and a primary silkworm pathogen. It causes major economic losses in sericulture. Baculoviruses are used in biological pest control and as a bioreactor. Silkworm and baculovirus comprise a well-established model of insect–virus interactions. Several recent studies have focused on this model and provided novel insights into viral infections and host defense. Here, we focus on baculovirus invasion, silkworm immune response, baculovirus evasion of host immunity, and enhancement of antiviral efficacy. We also discuss major issues remaining and future directions of research on silkworm antiviral immunity. Elucidation of the interaction between silkworm and baculovirus furnishes a theoretical basis for targeted pest control, enhanced pathogen resistance in economically important insects, and bioreactor improvement.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Marian R Goldsmith
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Jiang L, Wang Y, Guo H, Sun Q, Xie E, Liuli H, Li Q, Xia Q. Toxicological evaluation of transgenic silkworms. Toxicol Res (Camb) 2020; 9:845-853. [PMID: 33447368 DOI: 10.1093/toxres/tfaa089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/01/2020] [Accepted: 11/01/2020] [Indexed: 12/27/2022] Open
Abstract
Safety of transgenic silkworms must be evaluated before their commercial application. We assessed subacute toxicity using a 28-day feeding study in rats. Eighty rats were evenly allocated into four groups, with each group containing 10 male and 10 female rats. Rats of three groups were fed dried transgenic silkworm H19.9A pupae with overexpressed endogenous Bmhsp19.9, transgenic silkworm A4SOR pupae with overexpressed exogenous SOR, or normal silkworm pupae at a dose of 3.0 g/kg/day, respectively. The fourth group served as a normal feeding control. The body weight, feed consumption, hematology response variables, serum biochemical parameters, organ weights, gross necropsy, and histopathologic of animals were evaluated. No mortality, adverse effects, or major differences in the evaluated parameters were observed in the groups fed transgenic pupae in comparison with the control, suggesting that transgenic silkworms are toxicologically equivalent to normal silkworms and are safe for consumption in rats.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yumei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Qiang Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Enyu Xie
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Haoyu Liuli
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Qing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Sun Q, Guo H, Xia Q, Jiang L, Zhao P. Transcriptome analysis of the immune response of silkworm at the early stage of Bombyx mori bidensovirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103601. [PMID: 31899306 DOI: 10.1016/j.dci.2019.103601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Bombyx mori bidensovirus (BmBDV) infects silkworm midgut and causes chronic flacherie disease; however, the interaction between BmBDV and silkworm is unclear. Twenty-four hours after BmBDV infection, the midgut was extracted for RNA-seq to analyze the factors associated with BmBDV-invasion and the early antiviral immune response in silkworms. The total reads from each sample were more than 16100000 and the number of expressed genes exceeded 8200. There were 334 upregulated and 272 downregulated differentially expressed genes (DEGs). Gene ontology analysis of DEGs showed that structural constituents of cuticle, antioxidant, and immune system processes were upregulated. Further analysis revealed BmBDV-mediated induction of BmorCPR23 and BmorCPR44, suggesting possible involvement in viral invasion. Antioxidant genes that protect host cells from virus-induced oxidative stress, were significantly upregulated after BmBDV infection. Several genes related to peroxisomes, apoptosis, and autophagy-which may be involved in antiviral immunity-were induced by BmBDV. These results provide insights into the mechanism of BmBDV infection and host defense.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
9
|
Guo H, Sun Q, Wang B, Wang Y, Xie E, Xia Q, Jiang L. Spry is downregulated by multiple viruses to elevate ERK signaling and ensure viral reproduction in silkworm. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:1-5. [PMID: 30965060 DOI: 10.1016/j.dci.2019.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Viral diseases of silkworm are mainly caused by Bombyx mori nucleopolyhedrovirus (BmNPV), B. mori cytoplasmic polyhedrosis virus (BmCPV) and B. mori bidensovirus (BmBDV). The virus alters host cellular pathways to facilitate its proliferation. It is still unclear whether the three silkworm viruses regulate a certain host pathway. Spry is a negative regulator upstream of ERK. In this study, we found that BmSpry was decreased and p-ERK was increased in silkworm after infection with each virus. A transgenic RNAi vector of BmSpry was constructed and used for embryo microinjection to generate the transgenic line Spry-I. The expression of BmSpry was significantly reduced in Spry-I compared to that in non-transgenic silkworm. The viral content and mortality in Spry-I were significantly higher than those in non-transgenic larvae after infection with the three viruses. p-ERK was increased in Spry-I compared to that in non-transgenic control after virus infection. These results suggest that BmSpry is downregulated by multiple different classes of viruses to elevate p-ERK and ensure viral reproduction in the silkworm.
Collapse
Affiliation(s)
- Huizhen Guo
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Qiang Sun
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Bingbing Wang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Yumei Wang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Enyu Xie
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China.
| | - Liang Jiang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China.
| |
Collapse
|
10
|
Screening of PI3K-Akt-targeting Drugs for Silkworm against Bombyx mori Nucleopolyhedrovirus. Molecules 2019; 24:molecules24071260. [PMID: 30939726 PMCID: PMC6480691 DOI: 10.3390/molecules24071260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 11/17/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is the most prevalent threat to silkworms. Hence, there is a need for antiviral agents in sericulture. The PI3K-Akt pathway is essential for the efficient replication of the baculovirus. In an attempt to screen antiviral drugs against BmNPV, we summarized the commercial compounds targeting PI3K-Akt and selected the following seven oral drugs for further analyses: afuresertib, AZD8835, AMG319, HS173, AS605240, GDC0941, and BEZ235. Cell viability assay revealed that the cytotoxicity of these drugs at 10 µM concentration was not strong. Viral fluorescence observation and qPCR analysis showed that these candidate drugs significantly inhibited BmNPV in BmE cells. Only AMG319 and AZD8835 inhibited viral proliferation in silkworm larvae. The mortality of AZD8835-treated silkworms was lower than that of the control silkworms. Western blotting showed that AMG319 and AZD8835 decreased p-Akt expression after BmNPV infection. These results suggest that AZD8835 has application potential in sericulture.
Collapse
|