1
|
Li H, Mo J, Wang X, Pan B, Xu S, Li S, Zheng X, Lu W. IPS (In-Plant System) Delivery of Double-Stranded Vitellogenin and Vitellogenin receptor via Hydroponics for Pest Control in Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Int J Mol Sci 2023; 24:ijms24119497. [PMID: 37298448 DOI: 10.3390/ijms24119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Diaphorina citri, a vector of citrus huanglongbing (HLB) disease, frequently leads to HLB outbreaks and reduces Rutaceae crop production. Recent studies have investigated the effects of RNA interference (RNAi) targeting the Vitellogenin (Vg4) and Vitellogenin receptor (VgR) genes, which are involved in egg formation in this pest, providing a theoretical foundation for developing new strategies to manage D. citri populations. This study presents RNAi methods for Vg4 and VgR gene expression interference and reveals that dsVgR is more effective than dsVg4 against D. citri. We demonstrated that dsVg4 and dsVgR persisted for 3-6 days in Murraya odorifera shoots when delivered via the in-plant system (IPS) and effectively interfered with Vg4 and VgR gene expression. Following Vg4 and VgR gene expression interference, egg length and width in the interference group were significantly smaller than those in the negative control group during the 10-30-day development stages. Additionally, the proportion of mature ovarian eggs in the interference group was significantly lower than that in the negative control group at the 10, 15, 20, 25, and 30-day developmental stages. DsVgR notably suppresses oviposition in D. citri, with fecundity decreasing by 60-70%. These results provide a theoretical basis for controlling D. citri using RNAi to mitigate the spread of HLB disease.
Collapse
Affiliation(s)
- Hailin Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Junlan Mo
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaoyun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Biqiong Pan
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shu Xu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Shuangrong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
2
|
Hu X, Zhang B, Zheng X, Ji H, Feng K, Hu X, Gul I, Abbas MN, Cui H, Zhu Y. Molecular Characterization of Two Genes Encoding Novel Ca2+-Independent Phospholipase A2s from the Silkworm, Bombyx mori. Curr Issues Mol Biol 2022; 44:777-790. [PMID: 35723339 PMCID: PMC8929031 DOI: 10.3390/cimb44020054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Eicosanoids are crucial downstream signals in the insect immune responses. Phospholipase A2 (PLA2) catalyzes phospholipids, the initial step in eicosanoid biosynthesis. In mammals, the biological roles of Ca2+-independent Phospholipase A2 (iPLA2) have been extensively studied; however, only a few studies have attempted to explore iPLA2 functions in insects. In this study, we identified two iPLA2 genes (designated as BmiPLA2A and BmiPLA2B) in the silkworm, Bombyx mori. BmiPLA2A had a 2427 base pair (bp) open reading frame (ORF) that coded for a protein with 808 amino acids. In contrast, BmiPLA2B had a 1731 bp ORF that coded for a protein with 576 amino acids. Domain analysis revealed that BmiPLA2A had six ankyrin repeat domains, but BmiPLA2B lacks these domains. BmiPLA2A and BmiPLA2B were transcribed widely in various tissues and developmental stages with different expression patterns. The administration of 20-hydroxyecdysone increased their expression levels in the epidermis and hemocytes. Furthermore, challenged with virus, fungus, Gram-negative bacteria, and Gram-positive bacteria induced the expression of BmiPLA2A and BmiPLA2B with variable degrees along with different time points. Our findings imply that BmiPLA2A and BmiPLA2B may have important biological roles in the development and innate immunity of B. mori.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hongjuan Cui
- Correspondence: (H.C.); (Y.Z.); Tel.: +23-6825-1713 (H.C.); +23-6825-1939 (Y.Z.)
| | - Yong Zhu
- Correspondence: (H.C.); (Y.Z.); Tel.: +23-6825-1713 (H.C.); +23-6825-1939 (Y.Z.)
| |
Collapse
|
3
|
Choudhury A, Verma S, Muthamilarasan M, Rajam MV. Identification of suitable reference genes for expression profiling studies using qRT-PCR in an important insect pest, Maruca vitrata. Mol Biol Rep 2021; 48:7477-7485. [PMID: 34637095 DOI: 10.1007/s11033-021-06766-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Maruca vitrata is one of the potential insect pests that cause devastating losses to legume cultivation worldwide. Gene functional studies facilitate dissecting the molecular mechanisms underlying the infection process and enable devising appropriate molecular strategies to control this insect pest. Expression profiling using quantitative real-time PCR (qRT-PCR) provides insights into the functional characterization of target genes; however, ideal reference genes should be deployed in such studies to nullify the background variation and improve the accuracy of target gene expression. An ideal reference gene should have a stable expression across developmental stages, biological conditions, tissues, or experimental conditions. METHODS AND RESULTS Given this, the stability of eight candidate reference genes was evaluated in M. vitrata at different developmental stages, diets, and sexes by qRT-PCR method, and the data was analyzed using four independent algorithms, namely GeNorm, NormFinder, BestKeeper, and ΔCt, and one comprehensive algorithm, RefFinder. CONCLUSION The analysis showed that RP49 and RPL13 were the best suitable reference genes for studying target gene expression at different developmental stages. Further, the study identified RP49 and RPL24, and GAPDH and RPL24 as the ideal reference genes in M. vitrata fed with different diets and sexes, respectively. The reference genes reported in the present study will ensure the accuracy of target gene expression, and thus, will serve as an important resource for gene functional studies in M. vitrata.
Collapse
Affiliation(s)
- Aparajita Choudhury
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Shubham Verma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
4
|
Zhao H, Chen G, Sang L, Deng Y, Gao L, Yu Y, Liu J. Mitochondrial citrate synthase plays important roles in anthocyanin synthesis in petunia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110835. [PMID: 33691969 DOI: 10.1016/j.plantsci.2021.110835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Anthocyanins are important flavonoid pigments in plants. Malonyl CoA is an important intermediate in anthocyanin synthesis, and citrate, formed by citrate synthase (CS) catalysing oxaloacetate, is the precursor for the formation of malonyl-CoA. CS is composed of two isoforms, mitochondrial citrate synthase (mCS), a key enzyme of the tricarboxylic acid (TCA) cycle, and citrate synthase (CSY) localizated in microbodies in plants. However, no CS isoform involvement in anthocyanin synthesis has been reported. In this study, we identified the entire CS family in petunia (Petunia hybrida): PhmCS, PhCSY1 and PhCSY2. We obtained petunia plants silenced for the three genes. PhmCS silencing resulted in abnormal development of leaves and flowers. The contents of citrate and anthocyanins were significantly reduced in flowers in PhmCS-silenced plants. However, silencing of PhCSY1 and/or PhCSY2 did not cause a visible phenotype change in petunia. These results showed that PhmCS is involved in anthocyanin synthesis and the development of leaves and flowers, and that the citrate involved in anthocyanin synthesis mainly derived from mitochondria rather than microbodies in petunia.
Collapse
Affiliation(s)
- Huina Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| | - Guoju Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Lina Sang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Ying Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Lili Gao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Yixun Yu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Kim Y, Stanley D. Eicosanoid Signaling in Insect Immunology: New Genes and Unresolved Issues. Genes (Basel) 2021; 12:genes12020211. [PMID: 33535438 PMCID: PMC7912528 DOI: 10.3390/genes12020211] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
This paper is focused on eicosanoid signaling in insect immunology. We begin with eicosanoid biosynthesis through the actions of phospholipase A2, responsible for hydrolyzing the C18 polyunsaturated fatty acid, linoleic acid (18:2n-6), from cellular phospholipids, which is subsequently converted into arachidonic acid (AA; 20:4n-6) via elongases and desaturases. The synthesized AA is then oxygenated into one of three groups of eicosanoids, prostaglandins (PGs), epoxyeicosatrienoic acids (EETs) and lipoxygenase products. We mark the distinction between mammalian cyclooxygenases and insect peroxynectins, both of which convert AA into PGs. One PG, PGI2 (also called prostacyclin), is newly discovered in insects, as a negative regulator of immune reactions and a positive signal in juvenile development. Two new elements of insect PG biology are a PG dehydrogenase and a PG reductase, both of which enact necessary PG catabolism. EETs, which are produced from AA via cytochrome P450s, also act in immune signaling, acting as pro-inflammatory signals. Eicosanoids signal a wide range of cellular immune reactions to infections, invasions and wounding, including nodulation, cell spreading, hemocyte migration and releasing prophenoloxidase from oenocytoids, a class of lepidopteran hemocytes. We briefly review the relatively scant knowledge on insect PG receptors and note PGs also act in gut immunity and in humoral immunity. Detailed new information on PG actions in mosquito immunity against the malarial agent, Plasmodium berghei, has recently emerged and we treat this exciting new work. The new findings on eicosanoid actions in insect immunity have emerged from a very broad range of research at the genetic, cellular and organismal levels, all taking place at the international level.
Collapse
Affiliation(s)
- Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Korea
- Correspondence:
| | - David Stanley
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, 1503 South Providence Road, Columbia, MO 65203, USA;
| |
Collapse
|
6
|
Roy MC, Kim Y. sPLA 2 behaves like a prophylactic agent and mediates cellular and humoral immune responses in Plutella xylostella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21670. [PMID: 32196735 DOI: 10.1002/arch.21670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Most immune effectors are inducible to microbial pathogen infection while some are already present to act as prophylactic immunity against as yet unseen infection. This study identified secretory phospholipase A2 (sPLA2 ) as a prophylactic factor in diamondback moth, Plutella xylostella. Western blotting using a polyclonal antibody raised against other lepidopteran sPLA2 reacted specifically with ∼25 kDa protein, which was present at approximately 0.4 mM in the plasma of naïve larvae. Interrogation of P. xylostella transcriptomes revealed an open-reading frame for sPLA2 (Px-sPLA2 ), exhibiting high homology with other Group III sPLA2 s. Px-sPLA2 was expressed in all developmental stages. In the larval stage, bacterial challenge induced its expression in hemocytes and fat body but not in gut or epidermis. RNA interference (RNAi) suppressed Px-sPLA2 messenger RNA level and sPLA2 activity in plasma. An inhibition zone assay showed that Px-sPLA2 exhibited antibacterial activities against different species, because specific RNAi knockdown impaired the activity. The RNAi treatment also suppressed the cellular immune response assessed by hemocyte nodule formation and humoral immune response assessed by antimicrobial peptide gene expression. Finally, benzylideneacetone (BZA, a specific sPLA2 inhibitor) treatment inhibited plasma sPLA2 activity of naive larvae in a dose-dependent manner. An addition of BZA significantly increased the bacterial virulence of an entomopathogen, Bacillus thuringiensis. These results suggest that Px-sPLA2 is an immune-associated factor of P. xylostella and its relatively high level of concentration in the plasma of naive larvae strongly suggests its role as a prophylactic factor in defending against pathogens at early infection stages.
Collapse
Affiliation(s)
- Miltan Chandra Roy
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, South Korea
| |
Collapse
|