1
|
Wang JQ, Yu T, Qiu HY, Ji SW, Xu ZQ, Cui QC, Li HF, Liang WF, Feng S, Fu CT, Gao X, Han ZZ, Tian WN, Li JX, Xue SJ. Differential impact of spotted fever group rickettsia and anaplasmosis on tick microbial ecology: evidence from multi-species comparative microbiome analysis. Front Microbiol 2025; 16:1589263. [PMID: 40432969 PMCID: PMC12106494 DOI: 10.3389/fmicb.2025.1589263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Tick-borne diseases (TBDs) pose a significant public health challenge, as their incidence is increasing due to the effects of climate change and ecological shifts. The interplay between tick-borne pathogens and the host microbiome is an emerging area of research that may elucidate the mechanisms underlying disease susceptibility and severity. To investigate the diversity of microbial communities in ticks infected with vertebrate pathogens, we analyzed the microbiomes of 142 tick specimens. The presence of Rickettsia and Anaplasma pathogens in individual samples was detected through PCR. Our study aimed to elucidate the composition and variation of microbial communities associated with three tick species, which are known vectors for various pathogens affecting both wildlife and humans. We employed high-throughput sequencing techniques to characterize the microbial diversity and conducted statistical analyses to assess the correlation between the presence of specific pathogens and the overall microbial community structure. Pathogen screening revealed an overall positivity rate of 51.9% for Anaplasma and 44.6% for spotted fever group rickettsia (SFGR). Among the three tick species (Dermacentor silvarum, Haemaphysalis concinna, and Haemaphysalis japonica) analyzed, D. silvarum (the predominant species) exhibited the highest pathogen prevalence. The results indicate significant variation in microbial diversity between tick samples, with the presence of Anaplasma and SFGR associated with distinct changes in the microbial community composition. These findings underscore the complex interactions between ticks and their microbial inhabitants, enriching our understanding of tick-borne diseases.
Collapse
Affiliation(s)
- Jin-qi Wang
- Agricultural College of Yanbian University, Yanji, China
| | - Tian Yu
- Agricultural College of Yanbian University, Yanji, China
| | - Hong-yu Qiu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Sheng-wei Ji
- Agricultural College of Yanbian University, Yanji, China
| | - Zhi-qiang Xu
- Agricultural College of Yanbian University, Yanji, China
| | - Qi-chao Cui
- Agricultural College of Yanbian University, Yanji, China
| | - Hai-feng Li
- Agricultural College of Yanbian University, Yanji, China
| | - Wan-feng Liang
- Agricultural College of Yanbian University, Yanji, China
| | - Shuai Feng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chen-tao Fu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xu Gao
- Agricultural College of Yanbian University, Yanji, China
| | - Zhen-zhen Han
- Animal Health and Epidemic Prevention Center, Huludao, China
| | - Wan-nian Tian
- College of Animal Science, Jilin Agricultural Science and Technology College, Jilin, China
| | - Ji-xu Li
- Yanbian Center for Disease Control and Prevention, Yanji, China
| | - Shu-jiang Xue
- Agricultural College of Yanbian University, Yanji, China
| |
Collapse
|
2
|
Maitre A, Mateos-Hernandez L, Kratou M, Egri N, Maye J, Juan M, Hodžić A, Obregón D, Abuin-Denis L, Piloto-Sardinas E, Fogaça AC, Cabezas-Cruz A. Effects of Live and Peptide-Based Antimicrobiota Vaccines on Ixodes ricinus Fitness, Microbiota, and Acquisition of Tick-Borne Pathogens. Pathogens 2025; 14:206. [PMID: 40137691 PMCID: PMC11945021 DOI: 10.3390/pathogens14030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
This study explored the effects of antimicrobiota vaccines on the acquisition of Borrelia and Rickettsia, and on the microbiota composition of Ixodes ricinus ticks. Using a murine model, we investigated the immunological responses to live Staphylococcus epidermidis and multi-antigenic peptide (MAP) vaccines. Immunized mice were infected with either Borrelia afzelii or Rickettsia helvetica, and subsequently infested with pathogen-free I. ricinus nymphs. We monitored the tick feeding behavior, survival rates, and infection levels. Additionally, we employed comprehensive microbiota analyses, including the alpha and beta diversity assessments and microbial co-occurrence network construction. Our results indicate that both live S. epidermidis and MAP vaccines elicited significant antibody responses in mice, with notable bactericidal effects against S. epidermidis. The vaccination altered the feeding patterns and fitness of the ticks, with the Live vaccine group showing a higher weight and faster feeding time. Microbiota analysis revealed significant shifts in the beta diversity between vaccine groups, with distinct microbial networks and taxa abundances observed. Notably, the MAP vaccine group exhibited a more robust and complex network structure, while the Live vaccine group demonstrated resilience to microbial perturbations. However, the effects of antimicrobiota vaccination on Borrelia acquisition appeared taxon-dependent, as inferred from our results and previous findings on microbiota-driven pathogen refractoriness. Staphylococcus-based vaccines altered the microbiota composition but had no effect on B. afzelii infection, and yielded inconclusive results for R. helvetica. In contrast, previous studies suggest that E. coli-based microbiota modulation can induce a pathogen-refractory state, highlighting the importance of both bacterial species and peptide selection in shaping microbiota-driven pathogen susceptibility. However, a direct comparison under identical experimental conditions across multiple taxa is required to confirm this taxon-specific effect. These findings suggest that antimicrobiota vaccination influences tick fitness and microbiota assembly, but its effects on pathogen transmission depend on the bacterial taxon targeted and the selected peptide epitopes. This research provides insights into the need for strategic bacterial taxon selection to enhance vaccine efficacy in controlling tick-borne diseases.
Collapse
Affiliation(s)
- Apolline Maitre
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
- UR 0045 Laboratoire de Recherches Sur Le Développement de L’Elevage (SELMET-LRDE), INRAE, 20250 Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, 20250 Corte, France
| | - Lourdes Mateos-Hernandez
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
| | - Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia;
| | - Natalia Egri
- Servei d’Immunologia, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08036 Barcelona, Spain; (N.E.); (M.J.)
| | - Jennifer Maye
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France;
| | - Manel Juan
- Servei d’Immunologia, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08036 Barcelona, Spain; (N.E.); (M.J.)
| | - Adnan Hodžić
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria;
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1H 2W1, Canada;
| | - Lianet Abuin-Denis
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 Between 158 and 190, P.O. Box 6162, Havana 10600, Cuba
| | - Elianne Piloto-Sardinas
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas 32700, Cuba
| | - Andrea C. Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Alejandro Cabezas-Cruz
- Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, 94700 Maisons-Alfort, France; (A.M.); (L.M.-H.); (L.A.-D.); (E.P.-S.)
| |
Collapse
|
3
|
Guizzo MG, Frantová H, Lu S, Kozelková T, Číhalová K, Dyčka F, Hrbatová A, Tonk-Rügen M, Perner J, Ribeiro JM, Fogaça AC, Zurek L, Kopáček P. The immune factors involved in the rapid clearance of bacteria from the midgut of the tick Ixodes ricinus. Front Cell Infect Microbiol 2024; 14:1450353. [PMID: 39193502 PMCID: PMC11347951 DOI: 10.3389/fcimb.2024.1450353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Ticks are obligate hematophagous arthropods that transmit a wide range of pathogens to humans as well as wild and domestic animals. They also harbor a non-pathogenic microbiota, although our previous study has shown that the diverse bacterial microbiome in the midgut of Ixodes ricinus is quantitatively poor and lacks a core. In artificial infections by capillary feeding of ticks with two model bacteria (Gram-positive Micrococcus luteus and Gram-negative Pantoea sp.), rapid clearance of these microbes from the midgut was observed, indicating the presence of active immune mechanisms in this organ. In the current study, RNA-seq analysis was performed on the midgut of I. ricinus females inoculated with either M. luteus or Pantoea sp. or with sterile water as a control. While no immune-related transcripts were upregulated by microbial inoculation compared to that of the sterile control, capillary feeding itself triggered dramatic transcriptional changes in the tick midgut. Manual curation of the transcriptome from the midgut of unfed I. ricinus females, complemented by the proteomic analysis, revealed the presence of several constitutively expressed putative antimicrobial peptides (AMPs) that are independent of microbial stimulation and are referred to here as 'guard' AMPs. These included two types of midgut-specific defensins, two different domesticated amidase effector 2 (Dae2), microplusin/ricinusin-related molecules, two lysozymes, and two gamma interferon-inducible lysosomal thiol reductases (GILTs). The in vitro antimicrobial activity assays of two synthetic mature defensins, defensin 1 and defensin 8, confirmed their specificity against Gram-positive bacteria showing exceptional potency to inhibit the growth of M. luteus at nanomolar concentrations. The antimicrobial activity of midgut defensins is likely part of a multicomponent system responsible for the rapid clearance of bacteria in the tick midgut. Further studies are needed to evaluate the role of other identified 'guard' AMPs in controlling microorganisms entering the tick midgut.
Collapse
Affiliation(s)
- Melina Garcia Guizzo
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Helena Frantová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Tereza Kozelková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Kristýna Číhalová
- Department of Microbiology, Nutrition and Dietetics/CINeZ, Czech University of Life Sciences, Prague, Czechia
| | - Filip Dyčka
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Alena Hrbatová
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czechia
| | - Miray Tonk-Rügen
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - José M. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Andrea C. Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ludek Zurek
- Department of Microbiology, Nutrition and Dietetics/CINeZ, Czech University of Life Sciences, Prague, Czechia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
4
|
Puntillo M, Peralta G, Bürgi M, Huber P, Gaggiotti M, Binetti A, Vinderola G. Metaprofiling of the bacterial community in sorghum silages inoculated with lactic acid bacteria. J Appl Microbiol 2022; 133:2375-2389. [PMID: 35778976 DOI: 10.1111/jam.15698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
AIMS to characterize the fermentation process and bacterial diversity of sorghum silage inoculated with Lactiplantibacillus plantarum LpAv, Pediococcus pentosaceus PpM and Lacticaseibacillus paracasei LcAv. METHODS AND RESULTS chopped sorghum was ensiled using the selected strains. Physicochemical parameters (Ammonia Nitrogen/Total Nitrogen, Dry Matter, Crude Protein, Acid Detergent Fiber, Neutral Detergent Fiber, Acid Detergent Lignin, Ether Extract and Ashes), bacterial counts, cell cytometry and 16sRNA sequencing were performed to characterize the ensiling process and an animal trial (BALB/c mice) was conducted in order to preliminary explore the potential of sorghum silage to promote animal gut health. After 30 days of ensiling, the genus Lactobacillus comprised 68.4 ± 2.3 % and 73.5 ± 1.8 % of relative abundance, in control and inoculated silages respectively. Richness (Chao1 index) in inoculated samples, but not in control silages, diminished along ensiling, suggesting the domination of fermentation by the inoculated LAB. A trend in conferring enhanced protection against Salmonella infection was observed in the mouse model used to explore the potential to promote gut health of sorghum silage. CONCLUSIONS the LAB strains used in this study were able to dominate sorghum fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY this is the first report using metaprofiling of 16sRNA to characterize sorghum silage, showing a microbiological insight where resident and inoculated LAB strains overwhelmed the epiphytic microbiota, inhibiting potential pathogens of the genus Klebsiella.
Collapse
Affiliation(s)
- Melisa Puntillo
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería. Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Guillermo Peralta
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería. Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Milagros Bürgi
- Centro Biotecnológico del Litoral, FBCB (CONICET-UNL), Santa Fe, Argentina
| | - Paula Huber
- Laboratorio de Plancton, Instituto Nacional de Limnología (INALI, UNL-CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina, and Departamento de Hydrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos (SP), Brazil
| | - Mónica Gaggiotti
- Laboratorio de Calidad de Leche y Agroindustria, INTA EEA Rafaela, Santa Fe, Argentina
| | - Ana Binetti
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería. Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería. Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
5
|
Caragata EP, Short SM. Vector microbiota and immunity: modulating arthropod susceptibility to vertebrate pathogens. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100875. [PMID: 35065286 DOI: 10.1016/j.cois.2022.100875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Arthropods, including mosquitoes, sand flies, tsetse flies, and ticks are vectors of many bacterial, parasitic, and viral pathogens that cause serious disease in humans and animals. Their microbiota, that is, all microorganisms that dwell within their tissues, can impact vector immunity and susceptibility to pathogen infection. Historically, host-pathogen-microbiota interactions have not been well described, with little known about mechanism. In this review, we highlight recent advances in understanding how individual microorganisms and microbial communities interact with vectors and human pathogens, the mechanisms they utilize to achieve these effects, and the potential for exploiting these interactions to control pathogen transmission. These studies fill important knowledge gaps and further our understanding of the roles that the vector microbiota plays in pathogen transmission.
Collapse
Affiliation(s)
- Eric P Caragata
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962, USA
| | - Sarah M Short
- Department of Entomology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Wu-Chuang A, Hodžić A, Mateos-Hernández L, Estrada-Peña A, Obregon D, Cabezas-Cruz A. Current debates and advances in tick microbiome research. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100036. [PMID: 35284884 PMCID: PMC8906078 DOI: 10.1016/j.crpvbd.2021.100036] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The main importance of ticks resides in their ability to harbor pathogens that can be transmitted to terrestrial vertebrates including humans. Recently, studies have focused on the taxonomic and functional composition of the tick microbiome, its microbial diversity and variation under different factors including tick species, sex, and environment among others. Of special interest are the interactions between the tick, the microbiome and pathogens since tick microbiome can influence pathogen colonization within the tick vector, and potentially, transmission to the vertebrate host. In this review, we tackled a synthesis on the growing field of tick microbiomes. We focus on the current state of tick microbiome research, addressing controversial and hotly debated topics and advances in the precise manipulation of tick microbiome. Furthermore, we discuss the innovative anti-tick microbiota vaccines as a possible tool for microbiome modulation and thus, control of tick-borne diseases. Deciphering tick-microbiome pathogen interactions can spur new strategies to control tick-borne diseases via modulation of tick microbiome. Whether the diversity observed in tick microbiomes concerns the biology or the methodology remains an open question. Tick immunity must play a major role in selecting ‘who stays and who leaves’ the microbiome. Anti-tick microbiota vaccines can target specific bacteria and subsequently modulate tick microbiome.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | | | - Dasiel Obregon
- School of Environmental Sciences University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, 13400-970, Brazil
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
- Corresponding author.
| |
Collapse
|
7
|
Price DC, Brennan JR, Wagner NE, Egizi AM. Comparative hologenomics of two Ixodes scapularis tick populations in New Jersey. PeerJ 2021; 9:e12313. [PMID: 34820166 PMCID: PMC8588856 DOI: 10.7717/peerj.12313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
Tick-borne diseases, such as those transmitted by the blacklegged tick Ixodes scapularis, are a significant and growing public health problem in the US. There is mounting evidence that co-occurring non-pathogenic microbes can also impact tick-borne disease transmission. Shotgun metagenome sequencing enables sampling of the complete tick hologenome—the collective genomes of the tick and all of the microbial species contained therein, whether pathogenic, commensal or symbiotic. This approach simultaneously uncovers taxonomic composition and allows the detection of intraspecific genetic variation, making it a useful tool to compare spatial differences across tick populations. We evaluated this approach by comparing hologenome data from two tick samples (N = 6 ticks per location) collected at a relatively fine spatial scale, approximately 23 km apart, within a single US county. Several intriguing variants in the data between the two sites were detected, including polymorphisms in both in the tick’s own mitochondrial DNA and that of a rickettsial endosymbiont. The two samples were broadly similar in terms of the microbial species present, including multiple known tick-borne pathogens (Borrelia burgdorferi, Babesia microti, and Anaplasma phagocytophilum), filarial nematodes, and Wolbachia and Babesia species. We assembled the complete genome of the rickettsial endosymbiont (most likely Rickettsia buchneri) from both populations. Our results provide further evidence for the use of shotgun metagenome sequencing as a tool to compare tick hologenomes and differentiate tick populations across localized spatial scales.
Collapse
Affiliation(s)
- Dana C Price
- Department of Entomology, Center for Vector Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Julia R Brennan
- Department of Entomology, Center for Vector Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Nicole E Wagner
- Department of Entomology, Center for Vector Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Andrea M Egizi
- Department of Entomology, Center for Vector Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America.,Tick-Borne Disease Laboratory, Monmouth County Mosquito Control Division, Tinton Falls, NJ, United States of America
| |
Collapse
|
8
|
Dall'Agnol B, McCulloch JA, Mayer FQ, Souza U, Webster A, Antunes P, Doyle RL, Reck J, Ferreira CAS. Molecular characterization of bacterial communities of two neotropical tick species (Amblyomma aureolatum and Ornithodoros brasiliensis) using rDNA 16S sequencing. Ticks Tick Borne Dis 2021; 12:101746. [PMID: 34091278 DOI: 10.1016/j.ttbdis.2021.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022]
Abstract
Ticks are one of the main vectors of pathogens for humans and animals worldwide. However, they harbor non-pathogenic microorganisms that are important for their survival, facilitating both their nutrition and immunity. We investigated the bacterial communities associated with two neotropical tick species of human and veterinary potential health importance from Brazil: Amblyomma aureolatum and Ornithodoros brasiliensis. In A. aureolatum (adult ticks collected from wild canids from Southern Brazil), the predominant bacterial phyla were Proteobacteria (98.68%), Tenericutes (0.70%), Bacteroidetes (0.14%), Actinobacteria (0.13%), and Acidobacteria (0.05%). The predominant genera were Francisella (97.01%), Spiroplasma (0.70%), Wolbachia (0.51%), Candidatus Midichloria (0.25%), and Alkanindiges (0.13%). The predominant phyla in O. brasiliensis (adults, fed and unfed nymphs collected at the environment from Southern Brazil) were Proteobacteria (90.27%), Actinobacteria (7.38%), Firmicutes (0.77%), Bacteroidetes (0.44%), and Planctomycetes (0.22%). The predominant bacterial genera were Coxiella (87.71%), Nocardioides (1.73%), Saccharopolyspora (0.54%), Marmoricola (0.42%), and Staphylococcus (0.40%). Considering the genera with potential importance for human and animal health which can be transmitted by ticks, Coxiella sp. was found in all stages of O. brasiliensis, Francisella sp. in all stages of A. aureolatum and in unfed nymphs of O. brasiliensis, and Rickettsia sp. in females of A. aureolatum from Banhado dos Pachecos (BP) in Viamão municipality, Brazil, and in females and unfed nymphs of O. brasiliensis. These results deepen our understanding of the tick-microbiota relationship in Ixodidae and Argasidae, driving new studies with the focus on the manipulation of tick microbiota to prevent outbreaks of tick-borne diseases in South America.
Collapse
Affiliation(s)
- Bruno Dall'Agnol
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| | | | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Ugo Souza
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Anelise Webster
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Paola Antunes
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Rovaina Laureano Doyle
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - José Reck
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil.
| | | |
Collapse
|
9
|
Fogaça AC, Sousa G, Pavanelo DB, Esteves E, Martins LA, Urbanová V, Kopáček P, Daffre S. Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges. Front Immunol 2021; 12:628054. [PMID: 33737931 PMCID: PMC7962413 DOI: 10.3389/fimmu.2021.628054] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Ticks are ectoparasitic arthropods that necessarily feed on the blood of their vertebrate hosts. The success of blood acquisition depends on the pharmacological properties of tick saliva, which is injected into the host during tick feeding. Saliva is also used as a vehicle by several types of pathogens to be transmitted to the host, making ticks versatile vectors of several diseases for humans and other animals. When a tick feeds on an infected host, the pathogen reaches the gut of the tick and must migrate to its salivary glands via hemolymph to be successfully transmitted to a subsequent host during the next stage of feeding. In addition, some pathogens can colonize the ovaries of the tick and be transovarially transmitted to progeny. The tick immune system, as well as the immune system of other invertebrates, is more rudimentary than the immune system of vertebrates, presenting only innate immune responses. Although simpler, the large number of tick species evidences the efficiency of their immune system. The factors of their immune system act in each tick organ that interacts with pathogens; therefore, these factors are potential targets for the development of new strategies for the control of ticks and tick-borne diseases. The objective of this review is to present the prevailing knowledge on the tick immune system and to discuss the challenges of studying tick immunity, especially regarding the gaps and interconnections. To this end, we use a comparative approach of the tick immune system with the immune system of other invertebrates, focusing on various components of humoral and cellular immunity, such as signaling pathways, antimicrobial peptides, redox metabolism, complement-like molecules and regulated cell death. In addition, the role of tick microbiota in vector competence is also discussed.
Collapse
Affiliation(s)
- Andréa C. Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Géssica Sousa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel B. Pavanelo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eliane Esteves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa A. Martins
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
- Laboratory of Bacteriology, Tick-Pathogen Transmission Unit, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Veronika Urbanová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Sirlei Daffre
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Bonnet SI, Pollet T. Update on the intricate tango between tick microbiomes and tick-borne pathogens. Parasite Immunol 2020; 43:e12813. [PMID: 33314216 DOI: 10.1111/pim.12813] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
The recent development of high-throughput NGS technologies, (ie, next-generation sequencing) has highlighted the complexity of tick microbial communities-which include pathogens, symbionts, and commensals-and also their dynamic variability. Symbionts and commensals can confer crucial and diverse benefits to their hosts, playing nutritional roles or affecting fitness, development, nutrition, reproduction, defence against environmental stress and immunity. Nonpathogenic tick bacteria may also play a role in modifying tick-borne pathogen colonization and transmission, as relationships between microorganisms existing together in one environment can be competitive, exclusive, facilitating or absent, with many potential implications for both human and animal health. Consequently, ticks represent a compelling yet challenging system in which to investigate the composition and both the functional and ecological implications of tick bacterial communities, and thus merits greater attention. Ultimately, deciphering the relationships between microorganisms carried by ticks as well as symbiont-tick interactions will garner invaluable information, which may aid in some future arthropod-pest and vector-borne pathogen transmission control strategies. This review outlines recent research on tick microbiome composition and dynamics, highlights elements favouring the reciprocal influence of the tick microbiome and tick-borne agents and finally discusses how ticks and tick-borne diseases might potentially be controlled through tick microbiome manipulation in the future.
Collapse
Affiliation(s)
- Sarah Irène Bonnet
- UMR BIPAR 0956, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | | |
Collapse
|
11
|
Tirloni L, Braz G, Nunes RD, Gandara ACP, Vieira LR, Assumpcao TC, Sabadin GA, da Silva RM, Guizzo MG, Machado JA, Costa EP, Santos D, Gomes HF, Moraes J, dos Santos Mota MB, Mesquita RD, de Souza Leite M, Alvarenga PH, Lara FA, Seixas A, da Fonseca RN, Fogaça AC, Logullo C, Tanaka AS, Daffre S, Oliveira PL, da Silva Vaz I, Ribeiro JMC. A physiologic overview of the organ-specific transcriptome of the cattle tick Rhipicephalus microplus. Sci Rep 2020. [DOI: 10.1246/nikkashi.1979.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractTo further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.
Collapse
|
12
|
A physiologic overview of the organ-specific transcriptome of the cattle tick Rhipicephalus microplus. Sci Rep 2020; 10:18296. [PMID: 33106528 PMCID: PMC7588415 DOI: 10.1038/s41598-020-75341-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
To further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.
Collapse
|
13
|
Mechanisms Affecting the Acquisition, Persistence and Transmission of Francisella tularensis in Ticks. Microorganisms 2020; 8:microorganisms8111639. [PMID: 33114018 PMCID: PMC7690693 DOI: 10.3390/microorganisms8111639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
Over 600,000 vector-borne disease cases were reported in the United States (U.S.) in the past 13 years, of which more than three-quarters were tick-borne diseases. Although Lyme disease accounts for the majority of tick-borne disease cases in the U.S., tularemia cases have been increasing over the past decade, with >220 cases reported yearly. However, when comparing Borrelia burgdorferi (causative agent of Lyme disease) and Francisella tularensis (causative agent of tularemia), the low infectious dose (<10 bacteria), high morbidity and mortality rates, and potential transmission of tularemia by multiple tick vectors have raised national concerns about future tularemia outbreaks. Despite these concerns, little is known about how F. tularensis is acquired by, persists in, or is transmitted by ticks. Moreover, the role of one or more tick vectors in transmitting F. tularensis to humans remains a major question. Finally, virtually no studies have examined how F. tularensis adapts to life in the tick (vs. the mammalian host), how tick endosymbionts affect F. tularensis infections, or whether other factors (e.g., tick immunity) impact the ability of F. tularensis to infect ticks. This review will assess our current understanding of each of these issues and will offer a framework for future studies, which could help us better understand tularemia and other tick-borne diseases.
Collapse
|
14
|
Comparative Analysis of Infection by Rickettsia rickettsii Sheila Smith and Taiaçu Strains in a Murine Model. Pathogens 2020; 9:pathogens9090744. [PMID: 32927666 PMCID: PMC7557639 DOI: 10.3390/pathogens9090744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022] Open
Abstract
Rocky Mountain spotted fever (RMSF) is a life-threatening tick-borne disease caused by Rickettsia rickettsii, which is widely distributed throughout the Americas. Over 4000 cases of RMSF are recorded annually in the United States, while only around 100 cases are reported in Brazil. Conversely, while case fatality rates in the United States oscillate around 5%, in Brazil they can surpass 70%, suggesting that differences in tick vectoring capacity, population sensitivity, and/or variability in virulence of the rickettsial strains may exist. In this study, we compared the susceptibility of C3H/HeN mice to two highly virulent strains of R. rickettsii, one from the United States (Sheila Smith) and the other from Brazil (Taiaçu). Animals inoculated with the Taiaçu strain succumbed to infection earlier and exhibited severe histological lesions in both liver and spleen sooner than mice infected with the Sheila Smith strain. These differences in survival and signs of the disease are not related to a greater proliferation of the Taiaçu strain, as there were no significant differences in the rickettsial load in mice tissues inoculated with either strain. The present study is the first step to experimentally assess differences in fatality rates of RMSF in two different regions of the American continent.
Collapse
|
15
|
Capybaras (Hydrochoerus hydrochaeris) as amplifying hosts of Rickettsia rickettsii to Amblyomma sculptum ticks: Evaluation during primary and subsequent exposures to R. rickettsii infection. Ticks Tick Borne Dis 2020; 11:101463. [PMID: 32723630 DOI: 10.1016/j.ttbdis.2020.101463] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/10/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Rickettsia rickettsii is the agent of Brazilian spotted fever (BSF), the most lethal tick-borne disease in the western hemisphere. Amblyomma sculptum is the main vector of R. rickettsii in southeastern Brazil. Capybaras act as primary hosts for this tick species, and as amplifying hosts for R. rickettsii, creating new infected lineages of A. sculptum in BSF-endemic areas. In a recent study, we demonstrated that capybaras successively exposed to R. rickettsii-infected A. sculptum ticks developed a mean rickettsemic period of 9.2 days during primary infection, but no rickettsemia during subsequent expositions, when capybaras were immune to R. rickettsii. During the primary and subsequent infections, capybaras were also infested with uninfected A. sculptum ticks. These infestations compose the present study, which aimed to evaluate: (i) if either rickettsemic or non-rickettsemic capybaras could serve as infection sources of R. rickettsii for A. sculptum larvae and nymphs; (ii) the vector competence of the subsequent nymphs and adults (molted from the engorged ticks collected from capybaras); and (iii) if there were R. rickettsii-acquisition by uninfected ticks co-feeding with infected ticks on immune capybaras (without rickettsemia). Through experimental infection of capybaras with R. rickettsii via tick feeding, simulating a natural condition, we demonstrated that primarily infected capybaras developed rickettsemia that resulted in successful acquisition feeding of larvae and nymphs of A. sculptum, since part of these ticks maintained R. rickettsii transstadially, and the resultant molted ticks (either nymphs or adults) successfully transmitted the bacterium by feeding on susceptible rabbits. Contrastingly, all rabbit infestations with ticks derived from acquisition feeding on R. rickettsii-immune capybaras (including when acquisition ticks fed in direct contact with donor ticks) evidenced absence of R. rickettsii transmission due to lack of clinical signs and antibody response in those rabbits. Our results indicate that capybaras could serve as R. rickettsii-amplifying hosts for A. sculptum ticks only during the capybara's primary infection, but not during subsequent infections on immune capybaras. Finally, the probable co-feeding nonsystemic transmission of R. rickettsii seems to be irrelevant in the context of BSF epidemiology, in areas where capybaras are incriminated as main amplifying hosts of R. rickettsii for A. sculptum ticks.
Collapse
|