1
|
Zhao Y, Gu J, Wu R, Liu B, Dong P, Yu G, Zhao D, Li G, Yang Z. Characteristics of conserved microRNAome and their evolutionary adaptation to regulation of immune defense functions in the spleen of silver carp and bighead carp. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109312. [PMID: 38122951 DOI: 10.1016/j.fsi.2023.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
Immune defense functions of silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis) have shown obvious evolutionary divergence. MiRNAs participate in the fine regulation of immune function. However, the evolutionary adaptation of miRNAs in the regulation of immune defense function is still poorly understood in silver carp and bighead carp. Here, small RNA libraries were constructed from the spleen tissue of one-year-old and three-year-old healthy silver carp and bighead carp, 424 and 422 known conserved miRNAs were respectively identified from the spleen of silver carp and bighead carp by bioinformatic analysis, which 398 were shared between the two species. These conserved miRNAs showed highly similar expression patterns between silver carp and bighead carp, but the abundance in spleen varied greatly in different species. Family analysis showed that miRNA families including mir-8, mir-7, mir-23, mir-338, mir-30, mir-27, mir-221, mir-19, mir-181, mir-17, mir-15, mir-148, mir-130, mir-10 and let-7 were the main miRNAs in the spleen of silver carp and bighead carp. 27 and 51 significant differentially expressed (SDE) miRNAs were identified from silver carp and bighead carp, respectively. Evolution analysis for the predicted target genes of SDE-miRNAs showed that ten biological processes such as blood coagulation, cell adhesion mediated by integrin and adaptive immune response were positively selected. In addition, immune genes including TLR3, NFATC3, MALT1, B2M, GILT and MHCII were positively selected only in silver carp, and they were specifically targeted by the SDE-miRNAs including miR-9-5p, miR-196a-5p, miR-375, miR-122, miR-722, miR-132-3p, miR-727-5p, miR-724, miR-19d-5p and miR-138-5p, respectively. PLA2G4 in Fc epsilon RI signaling pathway was positively selected only in bighead carp and was specifically targeted by the SDE-miRNAs including miR-222b, miR-22b-5p, miR-15c, miR-146a, miR-125c-3p, miR-221-5p, miR-2188-5p, miR-142a-3p, miR-212, miR-138-5p and miR-15b-5p. In particular, SDE-miRNAs such as miR-144-3p, miR-2188-3p, miR-731, miR-363-3p and miR-218b could simultaneously target multiple evolutionarily differentiated immune-related genes. These results indicated that in the spleen of silver carp and bighead carp, conserved miRNAs have obvious evolutionary adaptations in the regulation of immune defense function. The results of this study can provide valuable resources for further revealing themechanism of miRNA in the formation of resistance traits evolution between silver carp and bighead carp.
Collapse
Affiliation(s)
- Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zheng Zhou, Henan Province, 450001, PR China.
| | - Jinxing Gu
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Ran Wu
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Bianzhi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Pengsheng Dong
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Daoquan Zhao
- Research Station for Field Scientific Observation of Aquatic Organisms in Yiluo River, Yellow River Basin, Lushi, Henan Province, 472200, PR China.
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Zhenjiang Yang
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| |
Collapse
|
2
|
Niu H, Hao Y, Pang Y, Shen Y, Li J, Xu X. LncRNA-adm2 targets adm2 via cid-miR-n3 and negatively regulates the inflammatory response in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108800. [PMID: 37187213 DOI: 10.1016/j.fsi.2023.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/23/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Long non-coding RNAs (lncRNAs), which impact gene expression following pathogen infections, have garnered significant attention in recent years. Recent discoveries have revealed that lncRNAs play a crucial role in fish immune responses to pathogen infections. We investigated the influence of lncRNA-adm2 on the antibacterial immune response generated by Aeromonas hydrophila in grass carp (Ctenopharyngodon idella) through the adsorption of cid-miR-n3. Furthermore, we found that cid-miR-n3 interacts with lncRNA-adm2 and targets the 3' UTR of adm2. The upregulation of lncRNA-adm2 expression led to the suppression of pro-inflammatory cytokines (il-1β and il-6) in CIK cells, while anti-inflammatory cytokines (il-10) increased. Our research provides evidence that lncRNAs are involved in the antibacterial immune response of fish, expanding our understanding of the function of lncRNAs in teleosts.
Collapse
Affiliation(s)
- Huiqin Niu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yinghu Hao
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yifan Pang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
3
|
Fang Y, Jin S, Xu XY, Shen Y, Wang Q, Li J. miR-130a targets CiGadd45bb to modulate the inflammatory response to bacterial infection in Ctenopharyngodon idella kidney (CIK) cells. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108633. [PMID: 36822380 DOI: 10.1016/j.fsi.2023.108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Septicemia is a systemic inflammatory response to bacterial infection that results in a hyper-inflammatory state, which could lead to septic shock and death in grass carp (Ctenopharyngodon idella). The aim of this study was to determine the underlying mechanism of microRNA (miR-130a) in bacteria-infected grass carp. Expression levels of miR-130a against Aeromonas hydrophila (A. hydrophila) infection in Ctenopharyngodon idella kidney cells (CIK) were analyzed. Luciferase reporter assay, quantitative reverse transcription-polymerase chain reaction were performed to explore whether Ctenopharyngodon idella growth arrest and DNA damage-inducible 45 (CiGadd45bb) was a target of miR-130a. MiR-130a mimic, inhibitor and miR-control were transfected to CIK respectively. After transfection, the expression levels of proinflammatory genes were determined. Here we show that CiGadd45bb as a target of miR-130a. We also confirmed that miR-130a levels were significantly higher after being stimulated for 4 h and lower after 12 h (P < 0.01). Overexpressing miR-130a strikingly inhibited p38, JNK, ERK and TNF-a genes (P < 0.01) and silencing miR-130a activated p38, JNK, ERK, TNF-a, IFN and IL-8 (P < 0.01). Our results provide a theoretical basis for studying the molecular mechanism underlying the regulation of inflammation by miR-130a in grass carp.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Aquatic Science and Technology, Jiangsu Agri-animal Husbandry and Veterinary College, Taizhou, Jiangsu, 225300, China; College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
| | - Shengzhen Jin
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Xiao-Yan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Quan Wang
- Department of Aquatic Science and Technology, Jiangsu Agri-animal Husbandry and Veterinary College, Taizhou, Jiangsu, 225300, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
4
|
Boutet I, Alves Monteiro HJ, Baudry L, Takeuchi T, Bonnivard E, Billoud B, Farhat S, Gonzales‐Araya R, Salaun B, Andersen AC, Toullec J, Lallier FH, Flot J, Guiglielmoni N, Guo X, Li C, Allam B, Pales‐Espinosa E, Hemmer‐Hansen J, Moreau P, Marbouty M, Koszul R, Tanguy A. Chromosomal assembly of the flat oyster ( Ostrea edulis L.) genome as a new genetic resource for aquaculture. Evol Appl 2022; 15:1730-1748. [PMID: 36426129 PMCID: PMC9679248 DOI: 10.1111/eva.13462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022] Open
Abstract
The European flat oyster (Ostrea edulis L.) is a native bivalve of the European coasts. Harvest of this species has declined during the last decades because of the appearance of two parasites that have led to the collapse of the stocks and the loss of the natural oyster beds. O. edulis has been the subject of numerous studies in population genetics and on the detection of the parasites Bonamia ostreae and Marteilia refringens. These studies investigated immune responses to these parasites at the molecular and cellular levels. Several genetic improvement programs have been initiated especially for parasite resistance. Within the framework of a European project (PERLE 2) that aims to produce genetic lines of O. edulis with hardiness traits (growth, survival, resistance) for the purpose of repopulating natural oyster beds in Brittany and reviving the culture of this species in the foreshore, obtaining a reference genome becomes essential as done recently in many bivalve species of aquaculture interest. Here, we present a chromosome-level genome assembly and annotation for the European flat oyster, generated by combining PacBio, Illumina, 10X linked, and Hi-C sequencing. The finished assembly is 887.2 Mb with a scaffold-N50 of 97.1 Mb scaffolded on the expected 10 pseudochromosomes. Annotation of the genome revealed the presence of 35,962 protein-coding genes. We analyzed in detail the transposable element (TE) diversity in the flat oyster genome, highlighted some specificities in tRNA and miRNA composition, and provided the first insight into the molecular response of O. edulis to M. refringens. This genome provides a reference for genomic studies on O. edulis to better understand its basic physiology and as a useful resource for genetic breeding in support of aquaculture and natural reef restoration.
Collapse
Affiliation(s)
- Isabelle Boutet
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | | | - Lyam Baudry
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Takeshi Takeuchi
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Eric Bonnivard
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Bernard Billoud
- Sorbonne Université, CNRSUMR 8227, Station Biologique de RoscoffRoscoffFrance
| | - Sarah Farhat
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | | | - Benoit Salaun
- Centre Régional de la Conchyliculture Bretagne NordMorlaixFrance
| | - Ann C. Andersen
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Jean‐Yves Toullec
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - François H. Lallier
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Jean‐François Flot
- Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Nadège Guiglielmoni
- Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal SciencesRutgers UniversityPort NorrisNew JerseyUSA
| | - Cui Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Bassem Allam
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Emmanuelle Pales‐Espinosa
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Jakob Hemmer‐Hansen
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Pierrick Moreau
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Martial Marbouty
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Romain Koszul
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Arnaud Tanguy
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| |
Collapse
|
5
|
Global Noncoding microRNA Profiling in Mice Infected with Partial Human Mouth Microbes (PAHMM) Using an Ecological Time-Sequential Polybacterial Periodontal Infection (ETSPPI) Model Reveals Sex-Specific Differential microRNA Expression. Int J Mol Sci 2022; 23:ijms23095107. [PMID: 35563501 PMCID: PMC9105503 DOI: 10.3390/ijms23095107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Periodontitis (PD) is a polymicrobial dysbiotic immuno-inflammatory disease. It is more prevalent in males and has poorly understood pathogenic molecular mechanisms. Our primary objective was to characterize alterations in sex-specific microRNA (miRNA, miR) after periodontal bacterial infection. Using partial human mouth microbes (PAHMM) (Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) in an ecological time-sequential polybacterial periodontal infection (ETSPPI) mouse model, we evaluated differential mandibular miRNA profiles by using high-throughput Nanostring nCounter® miRNA expression panels. All PAHMM mice showed bacterial colonization (100%) in the gingival surface, an increase in alveolar bone resorption (p < 0.0001), and the induction of a specific immunoglobin G antibody immune response (p < 0.001). Sex-specific differences in distal organ bacterial dissemination were observed in the heart (82% male vs. 28% female) and lungs (2% male vs. 68% female). Moreover, sex-specific differential expression (DE) of miRNA was identified in PAHMM mice. Out of 378 differentially expressed miRNAs, we identified seven miRNAs (miR-9, miR-148a, miR-669a, miR-199a-3p, miR-1274a, miR-377, and miR-690) in both sexes that may be implicated in the pathogenesis of periodontitis. A strong relationship was found between male-specific miR-377 upregulation and bacterial dissemination to the heart. This study demonstrates sex-specific differences in bacterial dissemination and in miRNA differential expression. A novel PAHMM mouse and ETSPPI model that replicates human pathobiology can be used to identify miRNA biomarkers in periodontitis.
Collapse
|
6
|
Expression characteristics and interaction networks of microRNAs in spleen tissues of grass carp (Ctenopharyngodon idella). PLoS One 2022; 17:e0266189. [PMID: 35344574 PMCID: PMC8959171 DOI: 10.1371/journal.pone.0266189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
The spleen is an important immune organ in fish. MicroRNAs (miRNAs) have been shown to play an important role in the regulation of immune function. However, miRNA expression profiles and their interaction networks associated with the postnatal late development of spleen tissue are still poorly understood in fish. The grass carp (Ctenopharyngodon idella) is an important economic aquaculture species in China. Here, two small RNA libraries were constructed from the spleen tissue of healthy grass carp at one-year-old and three-year-old. A total of 324 known conserved miRNAs and 9 novel miRNAs were identified by using bioinformatic analysis. Family analysis showed that 23 families such as let-7, mir-1, mir-10, mir-124, mir-8, mir-7, mir-9, and mir-153 were highly conserved between vertebrates and invertebrates. In addition, 14 families such as mir-459, mir-430, mir-462, mir-7147, mir-2187, and mir-722 were present only in fish. Expression analysis showed that the expression patterns of miRNAs in the spleen of one-year-old and three-year-old grass carp were highly consistent, and the percentage of miRNAs with TPM > 100 was above 39%. Twenty significant differentially expressed (SDE) miRNAs were identified. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that these SDE miRNAs were primarily involved in erythrocyte differentiation, lymphoid organ development, immune response, lipid metabolic process, the B cell receptor signaling pathway, the T cell receptor signaling pathway, and the PPAR signaling pathway. In addition, the following miRNA-mRNA interaction networks were constructed: immune and hematopoietic, cell proliferation and differentiation, and lipid metabolism. This study determined the miRNA transcriptome as well as miRNA-mRNA interaction networks in normal spleen tissue during the late development stages of grass carp. The results expand the number of known miRNAs in grass carp and are a valuable resource for better understanding the molecular biology of the spleen development in grass carp.
Collapse
|
7
|
Schmitz I. Gadd45 Proteins in Immunity 2.0. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:69-86. [DOI: 10.1007/978-3-030-94804-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Dong W, Gao W, Cui J, Xu T, Sun Y. microRNA-148 is involved in NF-κB signaling pathway regulation after LPS stimulation by targeting IL-1β in miiuy croaker. FISH & SHELLFISH IMMUNOLOGY 2021; 118:66-71. [PMID: 34474149 DOI: 10.1016/j.fsi.2021.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/06/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The inflammatory response is a protective process to clear detrimental stimuli, constitutes the defense against infectious pathogens. Clearing pathogen infection requires appropriate immune and inflammatory response, but excessive inflammatory response can lead to uncontrolled inflammation, autoimmune disease, or pathogen transmission. Accumulating evidences show that miRNAs are important and multifunctional regulators of innate immunity and inflammation. However, in the inflammatory response of lower vertebrates, the miRNAs regulatory networks are largely unknown. In this study, a combination of bioinformatics and experimental techniques were used to investigate the functions of miR-148. IL-1β is a hypothetical target gene of miR-148 predicted by bioinformatics. In addition, dual-luciferase reporter gene experiment was used to verify the targeting effect of miR-148 on IL-1β-3'UTR. miR-148 inhibits IL-1β expression in a dose-dependent manner at protein and mRNA levels. It is important that miR-148 participates in regulation of LPS-induced the NF-κB signaling pathway by inhibiting IL-1β. These results will improve our understanding of the regulation of miRNAs in fish on the immune response.
Collapse
Affiliation(s)
- Wenjing Dong
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenya Gao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| |
Collapse
|
9
|
Abo-Al-Ela HG. The emerging regulatory roles of noncoding RNAs in immune function of fish: MicroRNAs versus long noncoding RNAs. Mol Genet Genomics 2021; 296:765-781. [PMID: 33904988 DOI: 10.1007/s00438-021-01786-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The genome could be considered as raw data expressed in proteins and various types of noncoding RNAs (ncRNAs). However, a large portion of the genome is dedicated to ncRNAs, which in turn represent a considerable amount of the transcriptome. ncRNAs are modulated on levels of type and amount whenever any physiological process occurs or as a response to external modulators. ncRNAs, typically forming complexes with other partners, are key molecules that influence diverse cellular processes. Based on the knowledge of mammalian biology, ncRNAs are known to regulate and control diverse trafficking pathways and cellular activities. Long noncoding RNAs (lncRNAs) notably have diverse and more regulatory roles than microRNAs. Expanding these studies on fish has derived the same conclusion with relevance to other species, including invertebrates, explored the potentials to harness such types of RNA to further understand the biology of such organisms, and opened gates for applying recent technologies, such as RNA interference and delivering micromolecules as microRNAs to living cells and possibly to target organs. These technologies should improve aquaculture productivity and fish health, as well as help understand fish biology.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, 43518, Suez, Egypt.
| |
Collapse
|
10
|
Fan K, Shen Y, Xu X, Tao L, Bao T, Li J. LncRNA-WAS and lncRNA-C8807 interact with miR-142a-3p to regulate the inflammatory response in grass carp. FISH & SHELLFISH IMMUNOLOGY 2021; 111:201-207. [PMID: 33582280 DOI: 10.1016/j.fsi.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Septicemia of grass carp is a systemic inflammatory reaction caused by bacterial infection. More and more evidences show that long non-coding RNAs (lncRNAs) can participate in the regulation of inflammatory response. In the present study, lncRNA-WAS and lncRNA-C8807 were confirmed to be involved in the inflammatory response following infection with Aeromonas hydrophila. LncRNA-WAS and lncRNA-C8807 could interact with miR-142a-3p. LncRNA-WAS and lncRNA-C8807 interact with miR-142a-3p to effect pro-inflammatory genes and NF-κB pathway. Our results provide a theoretical basis for studying the molecular mechanism underlying the regulation of inflammation by lncRNA in grass carp.
Collapse
Affiliation(s)
- Kun Fan
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Lizhu Tao
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Tianjie Bao
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|