1
|
Tran HTQ, Ho TH, Nan FH, Liu CH, Hu YF, Chong CM, de Cruz CR, Karim M, Liu TJ, Kuo IP, Lee PT. Assessment of fish protein hydrolysate as a substitute for fish meal in white shrimp diets: Impact on growth, immune response, and resistance against Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109597. [PMID: 38697373 DOI: 10.1016/j.fsi.2024.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
This study investigated the effects of fish protein hydrolysate derived from barramundi on growth performance, muscle composition, immune response, disease resistance, histology and gene expression in white shrimp (Penaeus vannamei). In vitro studies demonstrated FPH enhanced mRNA expressions of key immune-related genes and stimulated reactive oxygen species (ROS) production and phagocytic activity in shrimp hemocytes. To evaluate the effects of substituting fish meal with FPH in vivo, four isoproteic (43 %), isolipidic (6 %), and isoenergetic diets (489 kcal/100 g) were formulated with fish meal substitution levels of 0 % (control), 30 % (FPH30), 65 % (FPH65), and 100 % (FPH100). After 8-week feeding, the growth performance of FPH65 and FPH100 were significantly lower than that of control and FPH30 (p < 0.05). Similarly, the midgut histological examination revealed the wall thickness and villi height of FPH100 were significantly lower than those of control (p < 0.05). The shrimps were received the challenge of AHPND + Vibrio parahaemolyticus at week 4 and 8. All FPH-fed groups significantly enhanced resistance against Vibrio parahaemolyticus at week 4 (p < 0.05). However, this protective effect diminished after long-period feeding. No significant difference of survival rate was observed among all groups at week 8 (p > 0.05). The expressions of immune-related genes were analyzed at week 4 before and after challenge. In control group, V. parahaemolyticus significantly elevated SOD in hepatopancreas and Muc 19, trypsin, Midline-fas, and GPx in foregut (p < 0.05). Moreover, hepatopancreatic SOD of FPH65 and FPH100 were significantly higher than that of control before challenge (p < 0.05). Immune parameters were measured at week 8. Compared with control, the phagocytic index of FPH 30 was significantly higher (p < 0.05). However, dietary FPH did not alter ROS production, phenoloxidase activity, phagocytic rate, and total hemocyte count (p > 0.05). These findings suggest that FPH30 holds promise as a feed without adverse impacts on growth performance while enhancing the immunological response of white shrimp.
Collapse
Affiliation(s)
| | - Thi Hang Ho
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Chou Min Chong
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Clement R de Cruz
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Murni Karim
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| | - Ting-Jui Liu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - I-Pei Kuo
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan; Freshwater Aquaculture Research Center Chupei Station, Fisheries Research Institute, Ministry of Agriculture, Hsinchu, Taiwan.
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan.
| |
Collapse
|
2
|
Viana JT, Rocha RDS, Maggioni R. Immunological lectins in shrimp Penaeus vannamei challenged with infectious myonecrosis virus (IMNV) under low-salinity conditions. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109471. [PMID: 38452959 DOI: 10.1016/j.fsi.2024.109471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Lectins are proteins capable of recognizing and binding to glycan in a specific way. In invertebrates, lectins are a crucial group of Pattern Recognition Proteins (PRRs), activating cellular and humoral responses in the innate immune system. The shrimp Penaeus vannamei is the main crustacean cultivated worldwide, however, the productivity of cultures is strongly affected by diseases, mainly viral ones, such as Infectious Myonecrosis (IMN). Thus, we investigated the participation of five lectins (LvAV, LvCTL4, LvCTL5, LvCTLU, and LvLdlrCTL) in IMNV-challenged shrimp. We verified upregulation gene profiles of lectins after IMNV-challenge, especially in hepatopancreas and gills, in addition to an increase in total hemocytes count (THC) after to 12 h post-infection (hpi). The bioinformatics characterization also revealed several sites of post-translational modification (PTM), such as phosphorylation and glycosylation, which possibly influence the action and stabilization of these lectins. We conclude that LvLdlrCTL and LvCTL5 are the lectins with greater participation in the activation of the immune system against IMNV, showing the greatest potential for PTM, higher upregulation levels, and overlapping with the THC and IMNV viral load.
Collapse
Affiliation(s)
- Jhonatas Teixeira Viana
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceara, 60165-081, Fortaleza, CE, Brazil; Federal Institute of Education, Science and Technology of Ceara, 62580-000, Acaraú, CE, Brazil.
| | - Rafael Dos Santos Rocha
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceara, 60165-081, Fortaleza, CE, Brazil
| | - Rodrigo Maggioni
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceara, 60165-081, Fortaleza, CE, Brazil
| |
Collapse
|