1
|
Gao B, Lu Y, Lai X, Xu X, Gou S, Yang Z, Gong Y, Yang H. Metabolic reprogramming in hepatocellular carcinoma: mechanisms of immune evasion and therapeutic implications. Front Immunol 2025; 16:1592837. [PMID: 40370433 PMCID: PMC12075234 DOI: 10.3389/fimmu.2025.1592837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, with limited treatment options for advanced stages. Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to adapt to the harsh tumor microenvironment (TME) and evade immune surveillance. This review involves the role of metabolic reprogramming in HCC, focusing on the dysregulation of glucose, lipid, and amino acid metabolism, and its impact on immune evasion. Key metabolic pathways, such as the Warburg effect, fatty acid synthesis, and glutaminolysis, are discussed, along with their influence on tumor-associated macrophages (TAMs) and immune cell function. Targeting these metabolic alterations presents a promising therapeutic approach to enhance immunotherapy efficacy and improve HCC patient outcomes.
Collapse
Affiliation(s)
- Bocheng Gao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Lu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Lai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Xu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuhua Gou
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhida Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Certo M, Niven J, Haas R, Rudzinska P, Smith J, Cucchi D, Hombrebueno JR, Mauro C. The sedoheptulose kinase CARKL controls T-cell cytokine outputs and migration by promoting metabolic reprogramming. DISCOVERY IMMUNOLOGY 2024; 3:kyae016. [PMID: 39669692 PMCID: PMC11635167 DOI: 10.1093/discim/kyae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/18/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
Background Immunometabolism is a crucial determinant of immune cell function, influencing cellular activation and differentiation through metabolic pathways. The intricate interplay between metabolism and immune responses is highlighted by the distinct metabolic programs utilized by immune cells to support their functions. Of particular interest is the pentose phosphate pathway (PPP), a key metabolic pathway branching out of glycolysis that plays a pivotal role in generating NADPH and pentose sugars crucial for antioxidant defense and biosynthesis. The sedoheptulose kinase Carbohydrate Kinase-like protein (CARKL), an enzyme involved in the PPP, emerges as a critical regulator of cell metabolism and was previously shown to play a role in macrophage function. Methods This study delves into the impact of CARKL expression on T-cell functionality, revealing dynamic alterations in response to cellular activation. Notably, CARKL overexpression leads to significant metabolic shifts in T cells, affecting mitochondrial respiration, ATP production, and inflammatory cytokine profiles. Furthermore, CARKL modulation influences T-cell motility by regulating chemokine receptor expression, particularly compromising CXCR3 expression and impairing T-cell migration in response to specific chemokine signals. Conclusions These findings underscore the multifaceted role of CARKL as a metabolic regulator shaping T-cell responses. Overall, our data reveal the complex regulatory mechanisms orchestrated by CARKL in T-cell function, with implications for immune regulation. Further exploration of the molecular interactions between CARKL and metabolic reprogramming in T cells could provide valuable insights into immune regulation and potential therapeutic strategies.
Collapse
Affiliation(s)
- Michelangelo Certo
- College of Medicine and Health, University of Birmingham, Birmingham, GB, UK
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, GB, UK
| | - Jennifer Niven
- College of Medicine and Health, University of Birmingham, Birmingham, GB, UK
| | - Robert Haas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, GB, UK
| | - Paula Rudzinska
- College of Medicine and Health, University of Birmingham, Birmingham, GB, UK
| | - Joanne Smith
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, GB, UK
| | - Danilo Cucchi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, GB, UK
| | - Jose R Hombrebueno
- College of Medicine and Health, University of Birmingham, Birmingham, GB, UK
| | - Claudio Mauro
- College of Medicine and Health, University of Birmingham, Birmingham, GB, UK
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, GB, UK
| |
Collapse
|
3
|
Ao-Di F, Han-Qing L, Xi-Zheng W, Ke Y, Hong-Xin G, Hai-Xia Z, Guan-Wei F, Li-Lan. Advances in macrophage metabolic reprogramming in myocardial ischemia-reperfusion. Cell Signal 2024; 123:111370. [PMID: 39216681 DOI: 10.1016/j.cellsig.2024.111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Acute myocardial infarction (AMI) is the leading cause of death worldwide, and reperfusion therapy is a critical therapeutic approach to reduce myocardial ischemic injury and minimize infarct size. However, ischemia/reperfusion (I/R) itself also causes myocardial injury, and inflammation is an essential mechanism by which it leads to myocardial injury, with macrophages as crucial immune cells in this process. Macrophages are innate immune cells that maintain tissue homeostasis, host defence during pathogen infection, and repair during tissue injury. During the acute phase of I/R, M1-type macrophages generate a pro-inflammatory milieu, clear necrotic myocardial tissue, and further recruit mononuclear (CCR2+) macrophages. Over time, the reparative (M2 type) macrophages gradually became dominant. In recent years, metabolic studies have shown a clear correlation between the metabolic profile of macrophages and their phenotype and function. M1-type macrophages are mainly characterized by glycolytic energy supply, and their tricarboxylic acid (TCA) cycle and mitochondrial oxidative phosphorylation (OXPHOS) processes are impaired. In contrast, M2 macrophages rely primarily on OXPHOS for energy. Changing the metabolic profile of macrophages can alter the macrophage phenotype. Altered energy pathways are also present in macrophages during I/R, and intervention in this process contributes to earlier and greater M2 macrophage infiltration, which may be a potential target for the treatment of myocardial I/R injury. Therefore, this paper mainly reviews the characteristics of macrophage energy metabolism alteration and phenotypic transition during I/R and its mechanism of mediating myocardial injury to provide a basis for further research in this field.
Collapse
Affiliation(s)
- Fan Ao-Di
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Han-Qing
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wang Xi-Zheng
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Ke
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guo Hong-Xin
- Heart center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhang Hai-Xia
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fan Guan-Wei
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Li-Lan
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, State Key Laboratory of Component-based Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
4
|
Hoque MM, Gbadegoye JO, Hassan FO, Raafat A, Lebeche D. Cardiac fibrogenesis: an immuno-metabolic perspective. Front Physiol 2024; 15:1336551. [PMID: 38577624 PMCID: PMC10993884 DOI: 10.3389/fphys.2024.1336551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac fibrosis is a major and complex pathophysiological process that ultimately culminates in cardiac dysfunction and heart failure. This phenomenon includes not only the replacement of the damaged tissue by a fibrotic scar produced by activated fibroblasts/myofibroblasts but also a spatiotemporal alteration of the structural, biochemical, and biomechanical parameters in the ventricular wall, eliciting a reactive remodeling process. Though mechanical stress, post-infarct homeostatic imbalances, and neurohormonal activation are classically attributed to cardiac fibrosis, emerging evidence that supports the roles of immune system modulation, inflammation, and metabolic dysregulation in the initiation and progression of cardiac fibrogenesis has been reported. Adaptive changes, immune cell phenoconversions, and metabolic shifts in the cardiac nonmyocyte population provide initial protection, but persistent altered metabolic demand eventually contributes to adverse remodeling of the heart. Altered energy metabolism, mitochondrial dysfunction, various immune cells, immune mediators, and cross-talks between the immune cells and cardiomyocytes play crucial roles in orchestrating the transdifferentiation of fibroblasts and ensuing fibrotic remodeling of the heart. Manipulation of the metabolic plasticity, fibroblast-myofibroblast transition, and modulation of the immune response may hold promise for favorably modulating the fibrotic response following different cardiovascular pathological processes. Although the immunologic and metabolic perspectives of fibrosis in the heart are being reported in the literature, they lack a comprehensive sketch bridging these two arenas and illustrating the synchrony between them. This review aims to provide a comprehensive overview of the intricate relationship between different cardiac immune cells and metabolic pathways as well as summarizes the current understanding of the involvement of immune-metabolic pathways in cardiac fibrosis and attempts to identify some of the previously unaddressed questions that require further investigation. Moreover, the potential therapeutic strategies and emerging pharmacological interventions, including immune and metabolic modulators, that show promise in preventing or attenuating cardiac fibrosis and restoring cardiac function will be discussed.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joy Olaoluwa Gbadegoye
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amr Raafat
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
- Medicine-Cardiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
5
|
An Y, Tan S, Yang J, Gao T, Dong Y. The potential role of Hippo pathway regulates cellular metabolism via signaling crosstalk in disease-induced macrophage polarization. Front Immunol 2024; 14:1344697. [PMID: 38274792 PMCID: PMC10808647 DOI: 10.3389/fimmu.2023.1344697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Macrophages polarized into distinct phenotypes play vital roles in inflammatory diseases by clearing pathogens, promoting tissue repair, and maintaining homeostasis. Metabolism serves as a fundamental driver in regulating macrophage polarization, and understanding the interplay between macrophage metabolism and polarization is crucial for unraveling the mechanisms underlying inflammatory diseases. The intricate network of cellular signaling pathway plays a pivotal role in modulating macrophage metabolism, and growing evidence indicates that the Hippo pathway emerges as a central player in network of cellular metabolism signaling. This review aims to explore the impact of macrophage metabolism on polarization and summarize the cell signaling pathways that regulate macrophage metabolism in diseases. Specifically, we highlight the pivotal role of the Hippo pathway as a key regulator of cellular metabolism and reveal its potential relationship with metabolism in macrophage polarization.
Collapse
Affiliation(s)
- Yina An
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuyu Tan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ting Gao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanjun Dong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Chen H, Guo Z, Sun Y, Dai X. The immunometabolic reprogramming of microglia in Alzheimer's disease. Neurochem Int 2023; 171:105614. [PMID: 37748710 DOI: 10.1016/j.neuint.2023.105614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder (NDD). In the central nervous system (CNS), immune cells like microglia could reprogram intracellular metabolism to alter or exert cellular immune functions in response to environmental stimuli. In AD, microglia could be activated and differentiated into pro-inflammatory or anti-inflammatory phenotypes, and these differences in cellular phenotypes resulted in variance in cellular energy metabolism. Considering the enormous energy requirement of microglia for immune functions, the changes in mitochondria-centered energy metabolism and substrates of microglia are crucial for the cellular regulation of immune responses. Here we reviewed the mechanisms of microglial metabolic reprogramming by analyzing their flexible metabolic patterns and changes that occurred in their metabolism during the development of AD. Further, we summarized the role of drugs in modulating immunometabolic reprogramming to prevent neuroinflammation, which may shed light on a new research direction for AD treatment.
Collapse
Affiliation(s)
- Hongli Chen
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Zichen Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|
7
|
Shi Y, Liao C, Dai F, Zhang Y, Li C, Liang W. Vibrio splendidus Fur regulates virulence gene expression, swarming motility, and biofilm formation, affecting its pathogenicity in Apostichopus japonicus. Front Vet Sci 2023; 10:1207831. [PMID: 37342622 PMCID: PMC10277475 DOI: 10.3389/fvets.2023.1207831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Vibrio splendidus is an opportunistic pathogen that causes skin ulcer syndrome and results in huge losses to the Apostichopus japonicus breeding industry. Ferric uptake regulator (Fur) is a global transcription factor that affects varieties of virulence-related functions in pathogenic bacteria. However, the role of the V. splendidus fur (Vsfur) gene in the pathogenesis of V. splendidus remains unclear. Hence, we constructed a Vsfur knock-down mutant of the V. splendidus strain (MTVs) to investigate the role of the gene in the effect of biofilm, swarming motility, and virulence on A. japonicus. The result showed that the growth curves of the wild-type V. splendidus strain (WTVs) and MTVs were almost consistent. Compared with WTVs, the significant increases in the transcription of the virulence-related gene Vshppd mRNA were 3.54- and 7.33-fold in MTVs at the OD600 of 1.0 and 1.5, respectively. Similarly, compared with WTVs, the significant increases in the transcription of Vsm mRNA were 2.10- and 15.92-fold in MTVs at the OD600 of 1.0 and 1.5, respectively. On the contrary, the mRNA level of the flagellum assembly gene Vsflic was downregulated 0.56-fold in MTVs at the OD600 of 1.0 compared with the WTVs. MTVs caused delayed disease onset time and reduced A. japonicus mortality. The median lethal doses of WTVs and MTVs were 9.116 × 106 and 1.658 × 1011 CFU·ml-1, respectively. Compared with WTVs, the colonization abilities of MTVs to the muscle, intestine, tentacle, and coelomic fluid of A. japonicus were significantly reduced. Correspondingly, the swarming motility and biofilm formation in normal and iron-replete conditions were remarkably decreased compared with those of WTVs. Overall, these results demonstrate that Vsfur contributes to the pathogenesis of V. splendidus by regulating virulence-related gene expression and affecting its swarming and biofilm formation abilities.
Collapse
Affiliation(s)
- Yue Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Changyu Liao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Fa Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Yiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Sun JX, Xu XH, Jin L. Effects of Metabolism on Macrophage Polarization Under Different Disease Backgrounds. Front Immunol 2022; 13:880286. [PMID: 35911719 PMCID: PMC9331907 DOI: 10.3389/fimmu.2022.880286] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Macrophages are versatile immune cells associated with various diseases, and their phenotypes and functions change on the basis of the surrounding environments. Reprogramming of metabolism is required for the proper polarization of macrophages. This review will focus on basic metabolic pathways, the effects of key enzymes and specific products, relationships between cellular metabolism and macrophage polarization in different diseases and the potential prospect of therapy targeted key metabolic enzymes. In particular, the types and characteristics of macrophages at the maternal-fetal interface and their effects on a successful conception will be discussed.
Collapse
Affiliation(s)
| | | | - Liping Jin
- *Correspondence: Liping Jin, ; Xiang-Hong Xu,
| |
Collapse
|
9
|
Zhou F, Sun L, Shao Y, Zhang X, Li C. AMPK-mediated glutaminolysis maintains coelomocytes redox homeostasis in Vibrio splendidus-challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 122:170-180. [PMID: 35150828 DOI: 10.1016/j.fsi.2022.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Glutaminolysis has been proved to play an irreplaceable role in vertebrate immunity, including effects on cytokine production, bacterial killing, and redox homeostasis maintenance. Our previous metabolomics analysis indicated that glutaminolysis metabolic substrates glutamine (Gln) and metabolites glutamate (Glu) were significantly lower in Skin ulceration syndrome (SUS)-diseased Apostichopus japonicus. To further delineate the role of glutaminolysis, we assayed the levels of Gln and Glu. We found that their contents in coelomocytes were decreased, accompanied by an increase in glutathione (GSH) in pathogen-challenged Apostichopus japonicus. Consistently, the mRNA transcripts of three key genes in glutaminolysis (AjASCT2, AjGOT, and AjGCS) were significantly induced. Moreover, the increased MDA and NADPH/NADP + levels in response to pathogen infection indicated that oxidative stress occurs during the immune response. The metabolic regulator AMPKβ could regulate glutaminolysis in vertebrates by inducing cells to take up extracellular Gln. To explore the underlying regulatory mechanism behind glutaminolysis that occurred in coelomocytes, the full-length cDNA of AMPKβ was identified from A. japonicus (designated as AjAMPKβ). AjAMPKβ expression was significantly induced in the coelomocytes after pathogen challenge, which was consistent with the expression of key genes of glutaminolysis. A functional assay indicated that AjAMPKβ silencing by siRNA transfection could increase the levels of Gln and Glu and depress the production of GSH. Moreover, the expression of glutaminolysis-related genes was significantly inhibited, and the reduction of redox homeostasis indexes (MDA and NADPH/NADP+) was also observed. Contrastingly, AjAMPKβ overexpression promoted redox homeostasis balance. Intracellular ROS is mostly responsible for breaking redox homeostasis and leading to oxidative stress, contributing to cell fate changes in immune cells. Exogenous Gln and GSH treatments could significantly reduce ROS level while the AjAMPKβ silencing induced the level of ROS and accelerated the necrosis rate. All these results collectively revealed that AjAMPKβ could modulate cellular redox homeostasis by affecting the glutaminolysis in A. japonicus.
Collapse
Affiliation(s)
- Fangyuan Zhou
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Yantai Marine Economic Research Institute, Yantai, 264034, PR China
| | - Lianlian Sun
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, China.
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, China
| | - Xiumei Zhang
- Yantai Marine Economic Research Institute, Yantai, 264034, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; Yantai Marine Economic Research Institute, Yantai, 264034, PR China.
| |
Collapse
|