1
|
Gu W, Ma X, Yang C, Jiang D, Fan H, Wang L, Song L. Insight into Ca 2+- inositol 1,4,5-trisphosphate receptor 2 (IP 3R2)-mediated unfolded protein response and apoptosis in scallop Patinopecten yessoensis under high temperature stress. Comp Biochem Physiol B Biochem Mol Biol 2025; 278:111092. [PMID: 40147540 DOI: 10.1016/j.cbpb.2025.111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
Inositol 1,4,5-trisphosphate receptor 2 (IP3R2) is an essential Ca2+ release channel protein located in the endoplasmic reticulum (ER), and plays a significant role in responding to various environmental stimuli. In the present study, the function of IP3R2 from Yesso scallop Patinopecten yessoensis (PyIP3R2) in regulating the Ca2+-mediated unfolded protein response (UPR) and apoptosis after high temperature (25 °C) treatment was investigated. Three MIR domains, one RYDR_ITPR domain, one RIH_assoc domain and one Ion_trans domain were identified in PyIP3R2. Both D-myo-inositol-1,4,5-triphosphate (IP3, an activator of IP3R) and high temperature significantly upregulated the mRNA expression level of PyIP3R2 and genes related to apoptosis and the UPR, and also increased intracellular Ca2+ content (p < 0.05). Furthermore, the IP3R antagonist 2-aminoethyl diphenylborinate (2-APB) had the opposite effect, decreasing intracellular Ca2+ content and the mRNA expression level of PyIP3R2, glucose regulated protein 78 (PyGRP78) and PyCaspase-3 (p < 0.05). However, the apoptosis rate and Caspase-3 activity remained comparable to those in the injection control group. These findings indicate that PyIP3R2 mediates UPR and apoptosis in scallop haemocytes by regulating Ca2+content and distribution, and providing insight into the cellular responses of scallops to high temperature.
Collapse
Affiliation(s)
- Wenfei Gu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaoxue Ma
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Dongli Jiang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Hongmei Fan
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
2
|
Fujimoto K, Totani Y, Nakai J, Chikamoto N, Namiki K, Hatakeyama D, Ito E. Identification of Putative Molecules for Adiponectin and Adiponectin Receptor and Their Roles in Learning and Memory in Lymnaea stagnalis. BIOLOGY 2023; 12:biology12030375. [PMID: 36979067 PMCID: PMC10045044 DOI: 10.3390/biology12030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
Adiponectin enhances insulin sensitivity, which improves cognition in mammals. How adiponectin affects the mechanism’s underlying cognition, however, remains unknown. We hypothesized that experiments using the pond snail Lymnaea stagnalis, which has long been used in learning and memory studies and in which the function of insulin-like peptides affect learning and memory, could clarify the basic mechanisms by which adiponectin affects cognition. We first identified putative molecules of adiponectin and its receptor in Lymnaea. We then examined their distribution in the central nervous system and changes in their expression levels when hemolymph glucose concentrations were intentionally decreased by food deprivation. We also applied an operant conditioning protocol of escape behavior to Lymnaea and examined how the expression levels of adiponectin and its receptor changed after the conditioned behavior was established. The results demonstrate that adiponectin and adiponectin’s receptor expression levels were increased in association with a reduced concentration of hemolymph glucose and that expression levels of both adiponectin and insulin-like peptide receptors were increased after the conditioning behavior was established. Thus, the involvement of the adiponectin-signaling cascade in learning and memory in Lymnaea was suggested to occur via changes in the glucose concentrations and the activation of insulin.
Collapse
Affiliation(s)
- Kanta Fujimoto
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
| | - Yuki Totani
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
| | - Junko Nakai
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
| | | | - Kengo Namiki
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
| | - Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence:
| |
Collapse
|
3
|
He Z, Yang C, Jiang D, Wang X, Xing Z, Yu S, Yang Q, Wang L. The expression profile of a multi-stress inducible transient receptor potential vanilloid 4 (TRPV4) in Pacific oyster Crassostrea gigas. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100064. [PMID: 36419610 PMCID: PMC9680104 DOI: 10.1016/j.fsirep.2022.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/05/2022] Open
Abstract
CgTRPV4 with typical structural characteristics was indentified from Crassostrea gigas. CgTRPV4 was located in both endoplasmic reticulum and cytoplasmic membrane of oyster haemocytes. CgTRPV4 mRNA was ubiquitously expressed with the highest level in gill. The expression of CgTRPV4 mRNA was significantly up-regulated after high temperature stress at 30°C or V. splendidus stimulation.
Transient receptor potential vanilloid 4 (TRPV4) is one of the major non-selective cation channel proteins, which plays a crucial role in sensing biotic and abiotic stresses, such as pathogen infection, temperature, mechanical pressure and osmotic pressure changes by regulating Ca2+ homeostasis. In the present study, a TRPV4 homologue was identified in Pacific oyster Crassostrea gigas, designated as CgTRPV4. The open reading frame (ORF) of CgTRPV4 was of 2298 bp encoding a putative polypeptide of 765 amino acid residues with three typical ankyrin domains and six conserved transmembrane domains of TRPV4 subfamily proteins, as well as multiple N-glycosylation sites, cAMP- and cGMP-dependent protein kinase phosphorylation sites, protein kinase C phosphorylation sites, casein kinase II phosphorylation sites, and prokaryotic membrane lipoprotein lipid attachment site. The deduced amino acid sequence of CgTRPV4 shared 20.5%-26.2% similarity with TRPV4s from other species. During the early ontogenesis stages of oyster, the mRNA transcripts of CgTRPV4 were detectable in all the stages with the highest expression level in fertilized eggs and the lowest in D-hinged larvae. In adult oyster, the CgTRPV4 mRNA could be detected in all the examined tissues, including gill, hepatopancreas, adductor muscle, labial palp, mantle and haemocyte, with the highest expression level in gill (45.08-fold of that in hepatopancreas, p < 0.05). In immunocytochemical assay, the CgTRPV4 positive signals were distributed in both endoplasmic reticulum and cytoplasmic membrane of oyster haemocytes. The mRNA expression of CgTRPV4 in gill was significantly up-regulated after high temperature stress at 30°C (p < 0.05) and after Vibrio splendidus stimulation (p < 0.05). These results indicated that CgTRPV4 was a classical member of TRPV4 family in oyster, which was induced by either biotic or abiotic stimulations and involved in mediating the stress response of oysters.
Collapse
|
4
|
Yoon DS, Byeon E, Kim DH, Lee MC, Shin KH, Hagiwara A, Park HG, Lee JS. Effects of temperature and combinational exposures on lipid metabolism in aquatic invertebrates. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109449. [PMID: 36055628 DOI: 10.1016/j.cbpc.2022.109449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Studies of changes in fatty acids in response to environmental temperature changes have been conducted in many species, particularly mammals. However, few studies have considered aquatic invertebrates, even though they are particularly vulnerable to changes in environmental temperature. In this review, we summarize the process by which animals synthesize common fatty acids and point out differences between the fatty acid profiles of vertebrates and those of aquatic invertebrates. Unlike vertebrates, some aquatic invertebrates can directly synthesize polyunsaturated fatty acids (PUFAs), which can be used to respond to temperature changes. Various studies have shown that aquatic invertebrates increase the degree of saturation in their fatty acids through an increase in saturated fatty acid production or a decrease in PUFAs as the temperature increases. In addition, we summarize recent studies that have examined the complex effects of temperature and combinational stressors to determine whether the degree of saturation in aquatic invertebrates is influenced by other factors. The combined effects of carbon dioxide partial pressure, food quality, starvation, salinity, and chemical exposures have been confirmed, and fatty acid profile changes in response to high temperature were greater than those from combinational stressors.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Food & Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
5
|
Bernardini I, Matozzo V, Valsecchi S, Peruzza L, Rovere GD, Polesello S, Iori S, Marin MG, Fabrello J, Ciscato M, Masiero L, Bonato M, Santovito G, Boffo L, Bargelloni L, Milan M, Patarnello T. The new PFAS C6O4 and its effects on marine invertebrates: First evidence of transcriptional and microbiota changes in the Manila clam Ruditapes philippinarum. ENVIRONMENT INTERNATIONAL 2021; 152:106484. [PMID: 33740673 DOI: 10.1016/j.envint.2021.106484] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
There is growing concern for the wide use ofperfluorooctanoic acid (PFOA) because of its toxic effects on the environment and on human health. A new compound - the so called C6O4 (perfluoro ([5-methoxy-1,3-dioxolan-4-yl]oxy) acetic acid) - was recently introduced as one of the alternative to traditional PFOA, however this was done without any scientific evidence of the effects of C6O4 when dispersed into the environment. Recently, the Regional Agency for the Protection of the Environment of Veneto (Italy) detected high levels of C6O4 in groundwater and in the Po river, increasing the alarm for the potential effects of this chemical into the natural environment. The present study investigates for the first time the effects of C6O4 on the Manila clam Ruditapes philippinarum exposed to environmental realistic concentrations of C6O4 (0.1 µg/L and 1 µg/L) for 7 and 21 days. Furthermore, in order to better understand if C6O4 is a valid and less hazardous alternative to its substitute, microbial and transcriptomic alterations were also investigated in clams exposed to 1 µg/L ofPFOA. Results indicate that C6O4 may cause significant perturbations to the digestive gland microbiota, likely determining the impairment of host physiological homeostasis. Despite chemical analyses suggest a 5 times lower accumulation potential of C604 as compared to PFOA in clam soft tissues, transcriptional analyses reveal several alterations of gene expression profile. A large part of the altered pathways, including immune response, apoptosis regulation, nervous system development, lipid metabolism and cell membrane is the same in C6O4 and PFOA exposed clams. In addition, clams exposed to C6O4 showed dose-dependent responses as well as possible narcotic or neurotoxic effects and reduced activation of genes involved in xenobiotic metabolism. Overall, the present study suggests that the potential risks for marine organism following environmental contamination are not reduced by replacing PFOA with C6O4. In addition, the detection of both C6O4 and PFOA into tissues of clams inhabiting the Lagoon of Venice - where there are no point sources of either compounds - recommends a similar capacity to spread throughout the environment. These results prompt the urgent need to re-evaluate the use of C6O4 as it may represent not only an environmental hazard but also a potential risk for human health.
Collapse
Affiliation(s)
- Ilaria Bernardini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Sara Valsecchi
- Water Research Institute, Italian National Research Council (IRSA-CNR), Via Mulino 19, 20861 Brugherio, MB, Italy
| | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Stefano Polesello
- Water Research Institute, Italian National Research Council (IRSA-CNR), Via Mulino 19, 20861 Brugherio, MB, Italy
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | | | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Maria Ciscato
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Luciano Masiero
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Marco Bonato
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Gianfranco Santovito
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | | | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|