1
|
Yue WYJ, Groves PJ. Age of challenge is important in Salmonella Enteritidis studies in pullets and hens: a systematic review. Avian Pathol 2025; 54:159-167. [PMID: 39392015 DOI: 10.1080/03079457.2024.2410873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Nontyphoidal serovars of Salmonella enterica subsp enterica frequently colonize the intestinal tracts of chickens, creating risks of contamination of meat and egg food products. These serovars seldom cause disease in chickens over 3 weeks of age. Colonization is generally transient but can continue to circulate in a flock for many months. Vaccination of breeders and layers is the most effective method of control of infections with serovars Enteritidis and Typhimurium, and the development of these vaccines or other preventative treatments requires challenge studies to demonstrate efficacy. However, establishing a successful challenge model where the control birds are colonized to a sufficient extent to be able to demonstrate a statistically significant reduction from the vaccine or treatment is problematic. A meta-analysis of published S. Enteritidis challenge studies was performed to pursue the best challenge model conditions that provide consistent control colonization outcomes. Challenge at sexual maturity was significantly more effective in achieving at least 80% colonization of control hens.RESEARCH HIGHLIGHTSSalmonella challenge chicken models do not always achieve high colonization levels in controls.The age of hen is important in achieving good caecal colonization.Challenge around sexual maturity provides the best control colonization outcome.A challenge dose rate of 105 CFU/ bird is adequate in birds under 30 weeks of age.
Collapse
Affiliation(s)
- Wing Y J Yue
- Sydney School of Veterinary Science, The University of Sydney, Camden, Australia
| | - Peter J Groves
- Sydney School of Veterinary Science, The University of Sydney, Camden, Australia
| |
Collapse
|
2
|
Shaji S, Selvaraj RK, Shanmugasundaram R. Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies. Microorganisms 2023; 11:2814. [PMID: 38004824 PMCID: PMC10672927 DOI: 10.3390/microorganisms11112814] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Salmonella is the leading cause of food-borne zoonotic disease worldwide. Non-typhoidal Salmonella serotypes are the primary etiological agents associated with salmonellosis in poultry. Contaminated poultry eggs and meat products are the major sources of human Salmonella infection. Horizontal and vertical transmission are the primary routes of infection in chickens. The principal virulence genes linked to Salmonella pathogenesis in poultry are located in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). Cell-mediated and humoral immune responses are involved in the defense against Salmonella invasion in poultry. Vaccination of chickens and supplementation of feed additives like prebiotics, probiotics, postbiotics, synbiotics, and bacteriophages are currently being used to mitigate the Salmonella load in poultry. Despite the existence of various control measures, there is still a need for a broad, safe, and well-defined strategy that can confer long-term protection from Salmonella in poultry flocks. This review examines the current knowledge on the etiology, transmission, cell wall structure, nomenclature, pathogenesis, immune response, and efficacy of preventative approaches to Salmonella.
Collapse
Affiliation(s)
- Syamily Shaji
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; (S.S.); (R.K.S.)
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; (S.S.); (R.K.S.)
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| |
Collapse
|
3
|
Grzywa R, Łupicka-Słowik A, Sieńczyk M. IgYs: on her majesty's secret service. Front Immunol 2023; 14:1199427. [PMID: 37377972 PMCID: PMC10291628 DOI: 10.3389/fimmu.2023.1199427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
There has been an increasing interest in using Immunoglobulin Y (IgY) antibodies as an alternative to "classical" antimicrobials. Unlike traditional antibiotics, they can be utilized on a continual basis without leading to the development of resistance. The veterinary IgY antibody market is growing because of the demand for minimal antibiotic use in animal production. IgY antibodies are not as strong as antibiotics for treating infections, but they work well as preventative agents and are natural, nontoxic, and easy to produce. They can be administered orally and are well tolerated, even by young animals. Unlike antibiotics, oral IgY supplements support the microbiome that plays a vital role in maintaining overall health, including immune system function. IgY formulations can be delivered as egg yolk powder and do not require extensive purification. Lipids in IgY supplements improve antibody stability in the digestive tract. Given this, using IgY antibodies as an alternative to antimicrobials has garnered interest. In this review, we will examine their antibacterial potential.
Collapse
|
4
|
Aganja RP, Sivasankar C, Hewawaduge C, Lee JH. Safety assessment of compliant, highly invasive, lipid A-altered, O-antigen-defected Salmonella strains as prospective vaccine delivery systems. Vet Res 2022; 53:76. [PMID: 36183131 PMCID: PMC9526937 DOI: 10.1186/s13567-022-01096-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
In the present study, two prospective Salmonella delivery strains, JOL2782 and JOL2837, were developed by gene deletions of lon and cpxR, which are related to cellular adhesion and intracellular survival. Additionally, sifA deletion was introduced for JOL2782, which confers immune susceptibility and improves antigen delivery. Similarly, the rfaL deletion and lpxE substitution for pagL were accomplished in JOL2837 to reduce virulence and endotoxicity. Thus, enhanced adhesion and invasion and reduced intracellular survival were attained. Furthermore, aspartic acid auxotrophic (asd) was deleted to impose Darwinian selection on retention of the foreign antigen-expressing plasmid. Both delivery strains induced sufficient cytokine expression, but the level was significantly lower than that of the wild-type strain; the lowest cytokine expression was induced by the JOL2837 strain, indicating reduced endotoxicity. In parallel, IgG production was significantly enhanced by both delivery strains. Thus, the innate and adaptive immunogenicity of the strains was ensured. The environmental safety of these strains was ascertained through faecal dissemination assays. The nonpathogenicity of these strains to the host was confirmed by body weight monitoring, survival assays, and morphological and histological assessments of the vital organs. The in vitro assay in murine and human cell lines and in vivo safety assessments in mice suggest that these novel strains possess safety, invasiveness, and immunogenicity, making them ideal delivery strains. Overall, the results clearly showed that strain JOL2782 with sifA deletion had higher invasiveness, demonstrating superior vaccine deliverability, while JOL2837 with lpxE substitution for pagL and rfaL deletion had outstanding safety potential with drastically abridged endotoxicity.
Collapse
Affiliation(s)
- Ram Prasad Aganja
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Chandran Sivasankar
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - Chamith Hewawaduge
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea
| | - John Hwa Lee
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
6
|
Han Y, Luo P, Chen Y, Xu J, Sun J, Guan C, Wang P, Chen M, Zhang X, Zhu Y, Zhu T, Zhai R, Cheng C, Song H. Regulated delayed attenuation improves vaccine efficacy in preventing infection from avian pathogenic Escherichia coli O 78 and Salmonella typhimurium. Vet Microbiol 2021; 254:109012. [PMID: 33611126 DOI: 10.1016/j.vetmic.2021.109012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) O78 and Salmonella typhimurium (S. Typhimurium) are two leading bacterial pathogens that cause significant economic loss in the poultry industry. O-antigen is an important immunogen of these two bacteria to induce host protective immune responses during infection. To develop a bivalent vaccine against APEC O78 and S. Typhimurium, the attenuated Salmonella ST01 (Δasd ΔrfbP Δcrp) was genetically constructed to deliver APEC O78 O-antigen polysaccharide (OPS), which stably expresses OPS with asd+ balanced-lethal system in vitro and in vivo. After oral immunization, the recombinant attenuated Salmonella vaccine (RASV) strain ST01 (pSS26-O78) provided insufficient protection against the APEC O78 challenge. Therefore, the regulated delayed attenuation strain ST02 (Δasd ΔrfbP ΔPcrp::TTaraC PBADcrp) was further constructed by regulating cyclic AMP receptor protein (crp) with araC PBAD cassette to better present the heterologous O-antigen to the host immune system. The innovative recombinant strain ST02 (pSS26-O78) stimulated robust antibody responses against APEC O78 and S. Typhimurium OPS, with serum titers over 1:800 for both IgG and IgA, thereby providing the complement-mediated bactericidal activity and stronger protection against APEC O78 and S. Typhimurium infection. Collectively, this study demonstrates a biologically-conjugated polysaccharide vaccine candidate that can enhance homologous protection against APEC O78 and S. Typhimurium.
Collapse
Affiliation(s)
- Yue Han
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Ping Luo
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Yuji Chen
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Jiali Xu
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Jing Sun
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Chiyu Guan
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Pu Wang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Mianmian Chen
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Xian Zhang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Yueyue Zhu
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Tingting Zhu
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Ruidong Zhai
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China
| | - Changyong Cheng
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China.
| | - Houhui Song
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, Lin'an, China.
| |
Collapse
|