1
|
Chang M, Min YQ, Xu Z, Deng F, Wang H, Ning YJ. Host factor MxA restricts Dabie bandavirus infection by targeting the viral NP protein to inhibit NP-RdRp interaction and ribonucleoprotein activity. J Virol 2024; 98:e0156823. [PMID: 38054738 PMCID: PMC10805036 DOI: 10.1128/jvi.01568-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high case mortality rates, which is caused by Dabie bandavirus (DBV), a novel pathogen also termed as SFTS virus (SFTSV). Currently, no specific therapeutic drugs or vaccines are available for SFTS. Myxovirus resistance protein A (MxA) has been shown to inhibit multiple viral pathogens; however, the role of MxA in DBV infection is unknown. Here, we demonstrated that DBV stimulates MxA expression which, in turn, restricts DBV infection. Mechanistic target analysis revealed that MxA specifically interacts with the viral nucleocapsid protein (NP) in a manner independent of RNA. Minigenome reporter assay showed that in agreement with its targeting of NP, MxA inhibits DBV ribonucleoprotein (RNP) activity. In detail, MxA interacts with the NP N-terminal and disrupts the interaction of NP with the viral RNA-dependent RNA polymerase (RdRp) but not NP multimerization, the critical activities of NP for RNP formation and function. Furthermore, MxA N-terminal domain was identified as the functional domain inhibiting DBV infection, and, consistently, then was shown to interact with NP and obstruct the NP-RdRp interaction. Additionally, threonine 103 within the N-terminal domain is important for MxA inhibition to DBV, and its mutation (T103A) attenuates MxA binding to NP and obstruction of the NP-RdRp interaction. This study uncovers MxA inhibition of DBV with a series of functional and mechanistical analyses, providing insights into the virus-host interactions and probably helping inform the development of antiviral agents in the future.IMPORTANCEDBV/SFTSV is an emerging high-pathogenic virus. Since its first identification in China in 2009, cases of DBV infection have been reported in many other countries, posing a significant threat to public health. Uncovering the mechanisms of DBV-host interactions is necessary to understand the viral pathogenesis and host response and may advance the development of antiviral therapeutics. Here, we found that host factor MxA whose expression is induced by DBV restricts the virus infection. Mechanistically, MxA specifically interacts with the viral NP and blocks the NP-RdRp interaction, inhibiting the viral RNP activity. Further studies identified the key domain and amino acid residue required for MxA inhibition to DBV. Consistently, they were then shown to be important for MxA targeting of NP and obstruction of the NP-RdRp association. These findings unravel the restrictive role of MxA in DBV infection and the underlying mechanism, expanding our knowledge of the virus-host interactions.
Collapse
Affiliation(s)
- Meng Chang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Qin Min
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhao Xu
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
2
|
Li M, Hu J, Zhou J, Wu C, Li D, Mao H, Kong L, Hu C, Xu X. Grass carp (Ctenopharyngodon idella) deacetylase SIRT1 targets p53 to suppress apoptosis in a KAT8 dependent or independent manner. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109264. [PMID: 38043873 DOI: 10.1016/j.fsi.2023.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Sirtuin1 (SIRT1) is known as a deacetylase to control various physiological processes. In mammals, SIRT1 inhibits apoptotic process, but the detailed mechanism is not very clear. Here, our study revealed that grass carp (Ctenopharyngodon idella) SIRT1 (CiSIRT1, MN125614.1) inhibits apoptosis through targeting p53 in a KAT8-dependent or a KAT8-independent manner. In CIK cells, CiSIRT1 over-expression results in significant decrease of some apoptotic gene expressions, including Bax/Bcl2, caspase3 and caspase9, whereas CiKAT8 or Cip53 facilitates the induction of apoptosis. Because CiSIRT1 separately interacted with CiKAT8 and Cip53, we speculated that CiSIRT1 blocked apoptosis may be by virtue of KAT8-p53 axis or directly by p53. In a KAT8-dependent manner, CiSIRT1 interacted with CiKAT8, then reduced the acetylation of CiKAT8 and subsequently promoted its degradation. Then, CiKAT8 acetylated p53 and induced p53-mediated apoptosis. MYST domain of CiKAT8 was critical in this pathway. In a KAT8-independent manner, CiSIRT1 also inhibited p53-induced apoptosis by directly deacetylating p53 and promoting the degradation of p53. Generally, these findings uncovered two pathways in which CiSIRT1 decreases the acetylation of p53 via a KAT8-dependent or a KAT8-independent manner.
Collapse
Affiliation(s)
- Meifeng Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China; School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jihuan Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jiazhan Zhou
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chuxin Wu
- Department of Natural Sciences, Yuzhang Normal University, Nanchang, 330103, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou, 344000, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
3
|
Ma W, Huang G, Wang Z, Wang L, Gao Q. IRF7: role and regulation in immunity and autoimmunity. Front Immunol 2023; 14:1236923. [PMID: 37638030 PMCID: PMC10449649 DOI: 10.3389/fimmu.2023.1236923] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Interferon regulatory factor (IRF) 7 was originally identified as master transcriptional factor that produced IFN-I and regulated innate immune response, subsequent studies have revealed that IRF7 performs a multifaceted and versatile functions in multiple biological processes. In this review, we provide a comprehensive overview on the current knowledge of the role of IRF7 in immunity and autoimmunity. We focus on the latest regulatory mechanisms of IRF7 in IFN-I, including signaling pathways, transcription, translation, and post-translational levels, the dimerization and nuclear translocation, and the role of IRF7 in IFN-III and COVID-19. In addition to antiviral immunity, we also discuss the role and mechanism of IRF7 in autoimmunity, and the further research will expand our understanding of IRF7.
Collapse
Affiliation(s)
- Wei Ma
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
Xiao J, Zhong H, Feng H. Post-translational modifications and regulations of RLR signaling molecules in cytokines-mediated response in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104631. [PMID: 36608898 DOI: 10.1016/j.dci.2023.104631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Teleosts rely on innate immunity to recognize and defense against pathogenic microorganisms. RIG-I-like receptor (RLR) family is the major pattern recognition receptor (PRR) to detect RNA viruses. After recognition of viral RNA components, these cytosolic sensors activate downstream signaling cascades to induce the expression of type I interferons (IFNs) and other cytokines firing antiviral responses. Meanwhile, numerous molecules take part in the complex regulation of RLR signals by various methods, such as post-translational modification (PTM), to produce an immune response that is appropriately balanced. In this review, we summarize our recent understanding of PTMs and other regulatory proteins in modulating RLR signaling pathway, which is helpful for systematically studying the regulatory mechanism of antiviral innate immunity of teleost fish.
Collapse
Affiliation(s)
- Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Huijuan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
5
|
Li M, Hu J, Mao H, Li D, Jiang Z, Sun Z, Yu T, Hu C, Xu X. Grass Carp ( Ctenopharyngodon idella) KAT8 Inhibits IFN 1 Response Through Acetylating IRF3/IRF7. Front Immunol 2022; 12:808159. [PMID: 35046960 PMCID: PMC8761793 DOI: 10.3389/fimmu.2021.808159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Post-translational modifications (PTMs), such as phosphorylation and ubiquitination, etc., have been reported to modulate the activities of IRF3 and IRF7. In this study, we found an acetyltransferase KAT8 in grass carp (CiKAT8, MW286472) that acetylated IRF3/IRF7 and then resulted in inhibition of IFN 1 response. CiKAT8 expression was up-regulated in the cells under poly I:C, B-DNA or Z-DNA stimulation as well as GCRV(strain 873) or SVCV infection. The acetyltransferase domain (MYST domain) of KAT8 promoted the acetylation of IRF3 and IRF7 through the direct interaction with them. So, the domain is essential for KAT8 function. Expectedly, KAT8 without MYST domain (KAT8-△264-487) was granularly aggregated in the nucleus and failed to down-regulate IFN 1 expression. Subcellular localization analysis showed that KAT8 protein was evenly distributed in the nucleus. In addition, we found that KAT8 inhibited the recruitment of IRF3 and IRF7 to ISRE response element. Taken together, our findings revealed that grass carp KAT8 blocked the activities of IRF3 and IRF7 by acetylating them, resulting in a low affinity interaction of ISRE response element with IRF3 and IRF7, and then inhibiting nucleic acids-induced innate immune response.
Collapse
Affiliation(s)
- Meifeng Li
- School of Life Science, Nanchang University, Nanchang, China
| | - Jihuan Hu
- School of Life Science, Nanchang University, Nanchang, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou, China
| | - Zeyin Jiang
- School of Life Science, Nanchang University, Nanchang, China
| | - Zhichao Sun
- School of Life Science, Nanchang University, Nanchang, China
| | - Tingting Yu
- School of Life Science, Nanchang University, Nanchang, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Sun ZC, Jiang Z, Xu X, Li M, Zeng Q, Zhu Y, Wang S, Li Y, Tian XL, Hu C. Fish Paralog Proteins RNASEK-a and -b Enhance Type I Interferon Secretion and Promote Apoptosis. Front Immunol 2021; 12:762162. [PMID: 34880860 PMCID: PMC8645942 DOI: 10.3389/fimmu.2021.762162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
Type I interferon and apoptosis elicit multifaceted effects on host defense and various diseases, such as viral infections and cancers. However, the gene/protein network regulating type I interferon and apoptosis has not been elucidated completely. In this study, we selected grass carp (Ctenopharyngodon idella) as an experimental model to investigate the modulation of RNASEK on the secretion of type I interferon and apoptosis. We first cloned two paralogs RNASEK-a and -b in grass carp, defined three exons in each gene, and found the length of both coding regions is 306 bp with 73.27% of protein homology. The protein sequences of the two paralogs are highly conserved across species. Two proteins were mainly localized in early and late endosomes and endoplasmic reticulum. Further, quantitative real-time PCR demonstrated that dsRNA poly I:C and grass carp reovirus upregulated RNASEK-a and -b in grass carp cells and tissues. Overexpression of RNASEK-a and -b individually induced type I interferon expression and the phosphorylation of IRF3/IRF7 shown by Western blot and immunofluorescent staining, increased Bax/Bcl-2 mRNA ratio, DNA fragmentations, TUNEL-positive cells, and the proportion of Annexin V-positive signals in flow cytometry, and activated eIF2α, opposite to that observed when RNASEK-a and -b were knocked down in multiple cell types. Taken together, we claim for the first time that fish paralog proteins RNASEK-a and -b enhance type I interferon secretion and promote apoptosis, which may be involved in the phosphorylation of IRF3/IRF7 and eIF2α, respectively. Our study reveals a previously unrecognized role of RNASEK as a new positive regulator of type I interferon and apoptosis.
Collapse
Affiliation(s)
- Zhi-Chao Sun
- College of Life Science, Nanchang University, Nanchang, China.,Human Aging Research Institute, Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, China
| | - Zeyin Jiang
- College of Life Science, Nanchang University, Nanchang, China
| | - Xiaowen Xu
- College of Life Science, Nanchang University, Nanchang, China
| | - Meifeng Li
- College of Life Science, Nanchang University, Nanchang, China
| | - Qing Zeng
- College of Life Science, Nanchang University, Nanchang, China
| | - Ying Zhu
- College of Life Science, Nanchang University, Nanchang, China.,Human Aging Research Institute, Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, China.,Blood Transfusion Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shanghong Wang
- College of Life Science, Nanchang University, Nanchang, China
| | - Yuanyuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Li Tian
- College of Life Science, Nanchang University, Nanchang, China.,Human Aging Research Institute, Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, China
| | - Chengyu Hu
- College of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Xu X, Li M, Deng Z, Jiang Z, Li D, Wang S, Hu C. cGASa and cGASb from grass carp (Ctenopharyngodon idellus) play opposite roles in mediating type I interferon response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104233. [PMID: 34403683 DOI: 10.1016/j.dci.2021.104233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) is known as a DNA sensor for the initiation of innate immune responses in human and other mammals. However, the knowledge about fish cGAS is limited. In this study, we identified two paralogs of cGAS genes from grass carp (Ctenopharyngodon idellus), namely, CicGASa and CicGASb. Grass carp cGASa and cGASb share some conservative domains with mammalian cGASs; however, cGASb contains a unique transmembrane domain. Grass carp cGASa and cGASb responded to GCRV and poly (dA:dT) infection, but they played opposite roles in the regulation of type I IFN response, i.e. cGASa served as an activator for ISGs and NF-κB in a dose-dependent manner, while cGASb acted as an inhibitor. We found that cGASa and cGASb interacted with STING. Similarly, cGASa is an activator for IRF7, but cGASb inhibited IRF7 expression. Both cGASa and STING can protect cells from GCRV infection. Grass carp cGASb inhibited cGASa-induced type I IFN response by the competitive interaction with STING, suggesting that cGASb may be a negative regulator of cGASa-STING-IRF7 axis.
Collapse
Affiliation(s)
- Xiaowen Xu
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China.
| | - Meifeng Li
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Zeyin Jiang
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou, 344000, China
| | - Shanghong Wang
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China
| | - Chengyu Hu
- College of Life Science, Nanchang University; Nanchang, 330031, Jiangxi, China.
| |
Collapse
|