1
|
Xiao J, Zhong H, Feng H. Post-translational modifications and regulations of RLR signaling molecules in cytokines-mediated response in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104631. [PMID: 36608898 DOI: 10.1016/j.dci.2023.104631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Teleosts rely on innate immunity to recognize and defense against pathogenic microorganisms. RIG-I-like receptor (RLR) family is the major pattern recognition receptor (PRR) to detect RNA viruses. After recognition of viral RNA components, these cytosolic sensors activate downstream signaling cascades to induce the expression of type I interferons (IFNs) and other cytokines firing antiviral responses. Meanwhile, numerous molecules take part in the complex regulation of RLR signals by various methods, such as post-translational modification (PTM), to produce an immune response that is appropriately balanced. In this review, we summarize our recent understanding of PTMs and other regulatory proteins in modulating RLR signaling pathway, which is helpful for systematically studying the regulatory mechanism of antiviral innate immunity of teleost fish.
Collapse
Affiliation(s)
- Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Huijuan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
2
|
Yu T, Zeng Q, Mao H, Liu Y, Zhang H, Wang S, Hu C, Xu X. Grass carp (Ctenopharyngodon idella) NLK2 inhibits IFN I response through blocking MAVS-IRF3 axis. FISH & SHELLFISH IMMUNOLOGY 2022; 131:206-217. [PMID: 36220536 DOI: 10.1016/j.fsi.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/17/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
In mammals, nemo-like kinase 2 (NLK2) is a conservative protein kinase involved in Wnt/β-catenin signaling pathway and immune response. However, the role of NLK2 in immune response in teleost remain unclear. In this study, we identified an ortholog of mammalian NLK from grass carp (Ctenopharyngodon idellus) named CiNLK2. CiNLK2 shares a high level of homology with the counterparts, especially with that of Cyprinus carpio. CiNLK2 was ubiquitously expressed in all tested tissues (liver, brain, spleen, gill, kidney and eye) and its expression was up-regulated under the treatment with poly I:C or GCRV. Overexpression of CiNLK2 suppressed the production of IFN I in CIK cells whether or not treated with poly I:C. However, knockdown of CiNLK2 increased the expression level of IFN I. The analysis of subcellular localization showed that CiNLK2 protein was scattered throughout the cytoplasm and nucleus. In terms of mechanism, CiNLK2 can directly interact with MAVS and inhibit MAVS-induced IFN I response. Moreover, CiNLK2 increased the phosphorylation level of MAVS, which led to the degradation of MAVS protein. On the other hand, CiNLK2 suppressed the phosphorylation and nuclear translocation of IRF3. In general, CiNLK2 served as an inhibitor for IFN I response by targeting MAVS-IRF3 signal axis.
Collapse
Affiliation(s)
- Tingting Yu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Qing Zeng
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
| | - Yulong Liu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Hongying Zhang
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China; Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|