1
|
Fan X, Ye J, Zhong W, Shen H, Li H, Liu Z, Bai J, Du S. The Promoting Effect of Animal Bioactive Proteins and Peptide Components on Wound Healing: A Review. Int J Mol Sci 2024; 25:12561. [PMID: 39684273 DOI: 10.3390/ijms252312561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The skin is the first line of defense to protect the host from external environmental damage. When the skin is damaged, the wound provides convenience for the invasion of external substances. The prolonged nonhealing of wounds can also lead to numerous subsequent complications, seriously affecting the quality of life of patients. To solve this problem, proteins and peptide components that promote wound healing have been discovered in animals, which can act on key pathways involved in wound healing, such as the PI3K/AKT, TGF-β, NF-κ B, and JAK/STAT pathways. So far, some formulations for topical drug delivery have been developed, including hydrogels, microneedles, and electrospinning nanofibers. In addition, some high-performance dressings have been utilized, which also have great potential in wound healing. Here, research progress on the promotion of wound healing by animal-derived proteins and peptide components is summarized, and future research directions are discussed.
Collapse
Affiliation(s)
- Xiaoyu Fan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanling Zhong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huijuan Shen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huahua Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhuyuan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jie Bai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shouying Du
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
2
|
Chen J, Zhang CY, Wang Y, Zhang L, Seah RWX, Ma L, Ding GH. Discovery of Ll-CATH: a novel cathelicidin from the Chong'an Moustache Toad (Leptobrachium liui) with antibacterial and immunomodulatory activity. BMC Vet Res 2024; 20:343. [PMID: 39095814 PMCID: PMC11295328 DOI: 10.1186/s12917-024-04202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Cathelicidins are vital antimicrobial peptides expressed in diverse vertebrates, crucial for immunity. Despite being a new field, amphibian cathelicidin research holds promise. RESULTS We isolated the cDNA sequence of the cathelicidin (Ll-CATH) gene from the liver transcriptome of the Chong'an Moustache Toad (Leptobrachium liui). We confirmed the authenticity of the cDNA sequence by rapid amplification of cDNA ends and reverse transcription PCR, and obtained the Ll-CATH amino acid sequence using the Open Reading Frame Finder, an online bioinformatics tool. Its translated protein contained a cathelin domain, signal peptide, and mature peptide, confirmed by amino acid sequence. The comparative analysis showed that the mature peptides were variable between the amphibian species, while the cathelin domain was conserved. The concentration of Ll-CATH protein and the expression of its gene varied in the tissues, with the spleen showing the highest levels. The expression levels of Ll-CATH in different tissues of toads was significantly increased post infection with Aeromonas hydrophila. Chemically synthesized Ll-CATH effectively combated Proteus mirabilis, Staphylococcus epidermidis, Vibrio harveyi, V. parahaemolyticus, and V. vulnificus; disrupted the membrane of V. harveyi, hydrolyzed its DNA. Ll-CATH induced chemotaxis and modulated the expression of pro-inflammatory cytokine genes in RAW264.7 macrophages. CONCLUSIONS This study unveiled the antibacterial and immunomodulatory potential of amphibian cathelicidin, implying its efficacy against infections. Ll-CATH characterization expands our knowledge, emphasizing its in a bacterial infection therapy.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, China
| | - Chi-Ying Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou , Zhejiang, 311121, China
| | - Yu Wang
- Administration Center of Zhejiang Jiulongshan National Nature Reserve, Suichang, Zhejiang, 323300, China
| | - Le Zhang
- College of Medicine, Lishui University, Lishui, 323000, China
| | - Rachel Wan Xin Seah
- Department of Biological Science, National University of Singapore, Singapore, 117558, Singapore
| | - Li Ma
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, China
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|
3
|
Yang T, Geng F, Tang X, Yu Z, Liu Y, Song B, Tang Z, Wang B, Ye B, Yu D, Zhang S. UV radiation-induced peptides in frog skin confer protection against cutaneous photodamage through suppressing MAPK signaling. MedComm (Beijing) 2024; 5:e625. [PMID: 38919335 PMCID: PMC11196897 DOI: 10.1002/mco2.625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Overexposure to ultraviolet light (UV) has become a major dermatological problem since the intensity of ultraviolet radiation is increasing. As an adaption to outside environments, amphibians gained an excellent peptide-based defense system in their naked skin from secular evolution. Here, we first determined the adaptation and resistance of the dark-spotted frogs (Pelophylax nigromaculatus) to constant ultraviolet B (UVB) exposure. Subsequently, peptidomics of frog skin identified a series of novel peptides in response to UVB. These UV-induced frog skin peptides (UIFSPs) conferred significant protection against UVB-induced death and senescence in skin cells. Moreover, the protective effects of UIFSPs were boosted by coupling with the transcription trans-activating (TAT) protein transduction domain. In vivo, TAT-conjugated UIFSPs mitigated skin photodamage and accelerated wound healing. Transcriptomic profiling revealed that multiple pathways were modulated by TAT-conjugated UIFSPs, including small GTPase/Ras signaling and MAPK signaling. Importantly, pharmacological activation of MAPK kinases counteracted UIFSP-induced decrease in cell death after UVB exposure. Taken together, our findings provide evidence for the potential preventive and therapeutic significance of UIFSPs in UV-induced skin damage by antagonizing MAPK signaling pathways. In addition, these results suggest a practicable alternative in which potential therapeutic agents can be mined from organisms with a fascinating ability to adapt.
Collapse
Affiliation(s)
- Tingyi Yang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Fenghao Geng
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Xiaoyou Tang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- Medical College of Tibet University, Tibet UniversityLhasaChina
| | - Zuxiang Yu
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Yulan Liu
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Bin Song
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Zhihui Tang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Baoning Wang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Bengui Ye
- Medical College of Tibet University, Tibet UniversityLhasaChina
| | - Daojiang Yu
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- Medical College of Tibet University, Tibet UniversityLhasaChina
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital)MianyangChina
| |
Collapse
|
4
|
Chen J, Yu CG, Zhou MM, Zhang GJ, Su HL, Ding GH, Wei L, Lin ZH, Ma L. An esculentin-1 homolog from a dark-spotted frog (Pelophylax nigromaculatus) possesses antibacterial and immunoregulatory properties. BMC Vet Res 2024; 20:164. [PMID: 38678277 PMCID: PMC11055230 DOI: 10.1186/s12917-024-04013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Esculentin-1, initially discovered in the skin secretions of pool frogs (Pelophylax lessonae), has demonstrated broad-spectrum antimicrobial activity; however, its immunomodulatory properties have received little attention. RESULTS In the present study, esculentin-1 cDNA was identified by analysing the skin transcriptome of the dark-spotted frog (Pelophylax nigromaculatus). Esculentin-1 from this species (esculentin-1PN) encompasses a signal peptide, an acidic spacer peptide, and a mature peptide. Sequence alignments with other amphibian esculentins-1 demonstrated conservation of the peptide, and phylogenetic tree analysis revealed its closest genetic affinity to esculentin-1P, derived from the Fukien gold-striped pond frog (Pelophylax fukienensis). Esculentin-1PN transcripts were observed in various tissues, with the skin exhibiting the highest mRNA levels. Synthetic esculentin-1PN demonstrated antibacterial activity against various pathogens, and esculentin-1PN exhibited bactericidal activity by disrupting cell membrane integrity and hydrolyzing genomic DNA. Esculentin-1PN did not stimulate chemotaxis in RAW264.7, a murine leukemic monocyte/macrophage cell line. However, it amplified the respiratory burst and augmented the pro-inflammatory cytokine gene (TNF-α and IL-1β) expression in RAW264.7 cells. CONCLUSIONS This novel finding highlights the immunomodulatory activity of esculentin-1PN on immune cells.
Collapse
Affiliation(s)
- Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Ci-Gang Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Min-Min Zhou
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Gao-Jian Zhang
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Hai-Long Su
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Guo-Hua Ding
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Li Wei
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Li Ma
- College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|
5
|
Ahmad A, Khan JM, Bandy A. A Systematic Review of the Design and Applications of Antimicrobial Peptides in Wound Healing. Cureus 2024; 16:e58178. [PMID: 38741875 PMCID: PMC11089580 DOI: 10.7759/cureus.58178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/16/2024] Open
Abstract
The sources of antimicrobial peptides (AMPs), also known as peptide-based antibiotics, are diverse, such as plants, animals, microorganisms including human leukocytes, saliva, human defense peptides, and human sweat. These natural sources provide a rich variety of AMPs with unique characteristics and potential therapeutic applications, including wound-healing and antimicrobial properties. AMPs derived from these sources have shown promise in combating a wide range of pathogens, making them valuable targets for further research and potential clinical applications. The design of AMPs for wound healing involves a meticulous process of structurally optimizing peptides to possess a unique combination of antibacterial and wound-healing characteristics. This systematic review was produced to show the design and applications of AMPs in wound healing. The terms "antimicrobial peptides AND wound healing" were used to search for articles published between September 2023 and January 2010. In the search, we found a total of 12958 articles, of which 12898 were excluded, and the remaining 60 articles were chosen for further study. This systematic review underscores the potential of AMPs as valuable tools in infection control and wound healing, showcasing their versatility and effectiveness in combating a wide range of pathogens. Overall, AMPs in wound healing display a diverse mechanism of action, influencing the inflammatory response, encouraging tissue regeneration, and aiding tissue remodeling, along with strong antibacterial activity. Furthermore, this systematic review addresses AMP toxicity studies, which include rigorous in vitro and in vivo examinations to determine potential cytotoxic effects, systemic toxicity, and any adverse responses connected with its usage in wound-healing applications.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Department of Medical Biochemistry, College of Medicine, Shaqra University, Shaqra, SAU
| | - Javed M Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, SAU
| | - Altaf Bandy
- Department of Community Medicine, College of Medicine, Shaqra University, Shaqra, SAU
| |
Collapse
|
6
|
García FA, Fuentes TF, Alonso IP, Bosch RA, Brunetti AE, Lopes NP. A Comprehensive Review of Patented Antimicrobial Peptides from Amphibian Anurans. JOURNAL OF NATURAL PRODUCTS 2024; 87:600-616. [PMID: 38412091 DOI: 10.1021/acs.jnatprod.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Since the 1980s, studies of antimicrobial peptides (AMPs) derived from anuran skin secretions have unveiled remarkable structural diversity and a wide range of activities. This study explores the potential of these peptides for drug development by examining granted patents, amino acid modifications related to patented peptides, and recent amphibians' taxonomic updates influencing AMP names. A total of 188 granted patents related to different anuran peptides were found, with Asia and North America being the predominant regions, contributing 65.4% and 15.4%, respectively. Conversely, although the Neotropical region is the world's most diversified region for amphibians, it holds only 3.7% of the identified patents. The antimicrobial activities of the peptides are claimed in 118 of these 188 patents. Additionally, for 160 of these peptides, 66 patents were registered for the natural sequence, 69 for both natural and derivative sequences, and 20 exclusively for sequence derivatives. Notably, common modifications include alterations in the side chains of amino acids and modifications to the peptides' N- and C-termini. This review underscores the biomedical potential of anuran-derived AMPs, emphasizing the need to bridge the gap between AMP description and practical drug development while highlighting the urgency of biodiversity conservation to facilitate biomedical discoveries.
Collapse
Affiliation(s)
- Fabiola Almeida García
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Avenida do Café, s/no, 14040-903 Ribeirão Preto, Brazil
| | - Talia Frómeta Fuentes
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Street No. 455, Vedado 10400, Cuba
| | - Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Street No. 455, Vedado 10400, Cuba
| | - Roberto Alonso Bosch
- Natural History Museum Felipe Poey, Faculty of Biology, University of Havana, Vedado 10400, Cuba
| | - Andrés E Brunetti
- Institute of Subtropical Biology (CONICET-UNAM), National University of Misiones, Posadas N3300LQH, Argentina
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Norberto Peporine Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Avenida do Café, s/no, 14040-903 Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Satapathy T, Kishore Y, Pandey RK, Shukla SS, Bhardwaj SK, Gidwani B. Recent Advancement in Novel Wound Healing Therapies by Using Antimicrobial Peptides Derived from Humans and Amphibians. Curr Protein Pept Sci 2024; 25:587-603. [PMID: 39188211 DOI: 10.2174/0113892037288051240319052435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 08/28/2024]
Abstract
The skin is the biggest organ in the human body. It is the first line of protection against invading pathogens and the starting point for the immune system. The focus of this review is on the use of amphibian-derived peptides and antimicrobial peptides (AMPs) in the treatment of wound healing. When skin is injured, a chain reaction begins that includes inflammation, the formation of new tissue, and remodelling of existing tissue to aid in the healing process. Collaborating with non-immune cells, resident and recruited immune cells in the skin remove foreign invaders and debris, then direct the repair and regeneration of injured host tissues. Restoration of normal structure and function requires the healing of damaged tissues. However, a major issue that slows wound healing is infection. AMPs are just one type of host-defense chemicals that have developed in multicellular animals to regulate the immune response and limit microbial proliferation in response to various types of biological or physical stress. Therefore, peptides isolated from amphibians represent novel therapeutic tools and approaches for regenerating damaged skin. Peptides that speed up the healing process could be used as therapeutic lead molecules in future research into novel drugs. AMPs and amphibian-derived peptides may be endogenous mediators of wound healing and treat non-life-threatening skin and epithelial lesions. Thus, the present article was drafted with to incorporate different peptides used in wound healing, their method of preparation and routes of administration.
Collapse
Affiliation(s)
- Trilochan Satapathy
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Yugal Kishore
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Ravindra Kumar Pandey
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Shiv Shankar Shukla
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Shiv Kumar Bhardwaj
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Beena Gidwani
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| |
Collapse
|
8
|
Wang X, Duan H, Li M, Xu W, Wei L. Characterization and mechanism of action of amphibian-derived wound-healing-promoting peptides. Front Cell Dev Biol 2023; 11:1219427. [PMID: 37397255 PMCID: PMC10309037 DOI: 10.3389/fcell.2023.1219427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Wound-healing-promoting peptides are excellent candidates for developing wound-healing agents due to their small size and low production cost. Amphibians are one of the major sources of bioactive peptides, including wound-healing-promoting peptides. So far, a series of wound-healing-promoting peptides have been characterized from amphibians. We hereby summarized the amphibian-derived wound-healing-promoting peptides and their mechanism of action. Among these peptides, two peptides (tylotoin and TK-CATH) were characterized from salamanders, and twenty five peptides were characterized from frogs. These peptides generally have small sizes with 5-80 amino acid residues, nine peptides (tiger17, cathelicidin-NV, cathelicidin-DM, OM-LV20, brevinin-2Ta, brevinin-2PN, tylotoin, Bv8-AJ, and RL-QN15) have intramolecular disulfide bonds, seven peptides (temporin A, temporin B, esculentin-1a, tiger17, Pse-T2, DMS-PS2, FW-1, and FW-2) are amidated at the C-terminus, and the others are linear peptides without modifications. They all efficiently accelerated the healing of skin wounds or photodamage in mice or rats. They selectively promoted the proliferation and migration of keratinocytes and fibroblasts, recruited neutrophils and macrophages to wounds, and regulated the immune response of neutrophils and macrophages in wounds, which were essential for wound healing. Interestingly, MSI-1, Pse-T2, cathelicidin-DM, brevinin-2Ta, brevinin-2PN, and DMS-PS2 were just antimicrobial peptides, but they also significantly promoted the healing of infected wounds by clearing off bacteria. Considering the small size, high efficiency, and definite mechanism, amphibian-derived wound-healing-promoting peptides might be excellent candidates for developing novel wound-healing-promoting agents in future.
Collapse
|
9
|
Chen J, Zhang CY, Chen JY, Seah RWX, Zhang L, Ma L, Ding GH. Host defence peptide LEAP2 contributes to antimicrobial activity in a mustache toad (Leptobrachium liui). BMC Vet Res 2023; 19:47. [PMID: 36765333 PMCID: PMC9921027 DOI: 10.1186/s12917-023-03606-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The liver-expressed antimicrobial peptide 2 (LEAP2) is essential in host immunity against harmful pathogens and is only known to act as an extracellular modulator to regulate embryonic development in amphibians. However, there is a dearth of information on the antimicrobial function of amphibian LEAP2. Hence, a LEAP2 homologue from Leptobrachium liui was identified, characterized, and chemically synthesized, and its antibacterial activities and mechanisms were determined. RESULTS In this study, LEAP2 gene (Ll-LEAP2) cDNA was cloned and sequenced from the Chong'an Moustache Toad (Leptobrachium liui). The predicted amino acid sequence of Ll-LEAP2 comprises a signal peptide, a mature peptide, and a prodomain. From sequence analysis, it was revealed that Ll-LEAP2 belongs to the cluster of amphibian LEAP2 and displays high similarity to the Tropical Clawed Frog (Xenopus tropicalis)'s LEAP2. Our study revealed that LEAP2 protein was found in different tissues, with the highest concentration in the kidney and liver of L. liui; and Ll-LEAP2 mRNA transcripts were expressed in various tissues with the kidney having the highest mRNA expression level. As a result of Aeromonas hydrophila infection, Ll-LEAP2 underwent a noticeable up-regulation in the skin while it was down-regulated in the intestines. The chemically synthesized Ll-LEAP2 mature peptide was selective in its antimicrobial activity against several in vitro bacteria including both gram-positive and negative bacteria. Additionally, Ll-LEAP2 can kill specific bacteria by disrupting bacterial membrane and hydrolyzing bacterial gDNA. CONCLUSIONS This study is the first report on the antibacterial activity and mechanism of amphibian LEAP2. With more to uncover, the immunomodulatory functions and wound-healing activities of Ll-LEAP2 holds great potential for future research.
Collapse
Affiliation(s)
- Jie Chen
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Chi-Ying Zhang
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Jing-Yi Chen
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Rachel Wan Xin Seah
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, 117558 Singapore
| | - Le Zhang
- grid.440824.e0000 0004 1757 6428School of Medicine, Lishui University, Lishui, 323000 China
| | - Li Ma
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|