1
|
Wang Z, Li L, Han Y, Jian S, Hou J, Huang P, Fan H, Zhao D. Immune-related function and pro-phenol oxidase system regulation of pacifastin-type serine protease inhibitor in Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110364. [PMID: 40306379 DOI: 10.1016/j.fsi.2025.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
Pacifastin is a multifunctional family of serine protease inhibitors that is conserved among the arthropods and regulates diverse physiological processes, such as activating the pro-phenol oxidase (proPO) system. However, the specific immunological roles of pacifastin in Eriocheir sinensis remain elusive. In this study, pacifastin was heterologously expressed in Escherichia coli and exhibited considerable inhibitory activity against bovine trypsin and α-chymotrypsin. Bacterial binding, agglutination, and in vivo bacterial clearance experiments demonstrated that the recombinant pacifastin directly interacted with bacterial cells and suppressed bacterial infection in E. sinensis. Furthermore, the results of bacterial infection and small-interfering RNA interference experiments showed that pacifastin modulates the immune response of the host to Aeromonas hydrophila infection through regulating the expression of genes involved in the proPO activation cascade. Additionally, glutathione S-transferase pull-down combined with mass spectrometry identified the potential interacting proteins from A. hydrophila, providing novel insights into the molecular basis of pacifastin-mediated immune defense. These findings deepen our understanding of the immune functions of pacifastin and theoretically support the development of disease prevention and control strategies targeting E. sinensis and other crustaceans.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; Jiangxi Provincial Key Laboratory of Aquatic Germplasm Innovation and Utilization, Nanchang, 330031, China.
| | - Linjie Li
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; Jiangxi Provincial Key Laboratory of Aquatic Germplasm Innovation and Utilization, Nanchang, 330031, China.
| | - Yingying Han
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; Jiangxi Provincial Key Laboratory of Aquatic Germplasm Innovation and Utilization, Nanchang, 330031, China.
| | - Shaoqing Jian
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; Jiangxi Provincial Key Laboratory of Aquatic Germplasm Innovation and Utilization, Nanchang, 330031, China.
| | - Jiahao Hou
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; Jiangxi Provincial Key Laboratory of Aquatic Germplasm Innovation and Utilization, Nanchang, 330031, China.
| | - Peiying Huang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; Jiangxi Provincial Key Laboratory of Aquatic Germplasm Innovation and Utilization, Nanchang, 330031, China.
| | - Hongxiang Fan
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; Jiangxi Provincial Key Laboratory of Aquatic Germplasm Innovation and Utilization, Nanchang, 330031, China.
| | - Daxian Zhao
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; Jiangxi Provincial Key Laboratory of Aquatic Germplasm Innovation and Utilization, Nanchang, 330031, China.
| |
Collapse
|
2
|
Shen G, Wang G, Chen J, Guo Y, Zhang W, Xu C, Chen L, Wang Q. MALT1 promotes the antibacterial immune response by activating NF-κB signaling and enhancing hemocyte phagocytosis in the Chinese mitten crab. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110100. [PMID: 39733914 DOI: 10.1016/j.fsi.2024.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), a scaffold protein, plays a pivotal role in the NF-κB pathway downstream of T-cell receptors (TCRs) and B-cell receptors (BCRs). As a key signaling hub, MALT1 integrates various pathways, making it essential for both innate and adaptive immunity. However, its role in the antibacterial immune responses of crustaceans remains unclear. Here, we characterized MALT1 from the Chinese mitten crab (Eriocheir sinensis), denoted as EsMALT1, and compared its sequence and domain conservation with MALT1 from other species. Furthermore, Vibrio parahaemolyticus infection upregulated EsMALT1 expression markedly. Knockdown of EsMALT1 in hemocytes inhibits the translocation of the NF-κB-like transcription factors EsRelish and EsDorsal from the cytoplasm to the nucleus in response to Vibrio parahaemolyticus stimulation, thereby reducing the expression of the antimicrobial peptides anti-lipopolysaccharide factor (ALF), and Crustins. At the cellular level, silencing of EsMALT1 expression significantly inhibited the phagocytic capacity of crab hemocytes against Vibrio parahaemolyticus. In vivo, silencing of EsMALT1 rendered crabs susceptible to bacterial infection and impaired their bacterial clearance. In conclusion, EsMALT1 promotes both humoral and cellular immunity in E. sinensis, making it essential for the induction of antibacterial immune responses.
Collapse
Affiliation(s)
- Guoqing Shen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Guangyu Wang
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Jinming Chen
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Yanan Guo
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Wen Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Chaohui Xu
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
3
|
Crow RS, Grayfer L, Smith LC. Recombinant SpTransformer proteins bind to specific sites on sea urchin phagocytes and modulate SpTransformer gene expression and immune responsiveness. Front Immunol 2025; 15:1496832. [PMID: 39936151 PMCID: PMC11810900 DOI: 10.3389/fimmu.2024.1496832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction The California purple sea urchin, Strongylocentrotus purpuratus, relies exclusively on an innate immune system to survive in its pathogen rich marine environment. Central to this defense is the SpTransformer (SpTrf) gene family that is unique to the euechinoid group of echinoderms. These genes were initially identified based on their striking upregulation in response to immune challenge. The SpTrf gene family encodes structurally similar proteins with a wide range of sequence diversity within and among individual sea urchins. A recombinant (r)SpTrf protein interacts specifically with a variety of non-self targets. Other rSpTrf proteins cross-linked to inert beads show distinct functions for cell binding and augmenting phagocytosis . However, whether the rSpTrf proteins bind to sea urchin phagocytes, and the cellular consequences of binding are largely unexplored. Methods rSpTrf protein binding to, and responses by phagocytes was investigated by cytology, flow cytometry, binding competitions using In-cell ELISA, and gene expression analyses. Results Soluble rSpTrf proteins bind specifically and exclusively to both live and fixed polygonal and small phagocytes. The different rSpTrf proteins appear to bind shared receptor(s) or other form of cell surface binding site. The phagocyte response to bound rSpTrf proteins culminates in modulated expression of the SpTrf gene family as well as other immune-related genes. Conclusions These findings underscore the multifaceted and dynamic functions of SpTrf proteins within the innate immune system of the purple sea urchin. Their varied functions enable a robust immune response while also providing a unique modulatory mechanism by which response levels are controlled and adjusted to the level of the foreign threat.
Collapse
Affiliation(s)
| | | | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
4
|
Sacchi S, Malagoli D, Franchi N. The Invertebrate Immunocyte: A Complex and Versatile Model for Immunological, Developmental, and Environmental Research. Cells 2024; 13:2106. [PMID: 39768196 PMCID: PMC11674123 DOI: 10.3390/cells13242106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The knowledge of comparative and developmental immunobiology has grown over the years and has been strengthened by the contributions of multi-omics research. High-performance microscopy, flow cytometry, scRNA sequencing, and the increased capacity to handle complex data introduced by machine learning have allowed the uncovering of aspects of great complexity and diversity in invertebrate immunocytes, i.e., immune-related circulating cells, which until a few years ago could only be described in terms of morphology and basic cellular functions, such as phagocytosis or enzymatic activity. Today, invertebrate immunocytes are recognized as sophisticated biological entities, involved in host defense, stress response, wound healing, organ regeneration, but also in numerous functional aspects of organismal life not directly related to host defense, such as embryonic development, metamorphosis, and tissue homeostasis. The multiple functions of immunocytes do not always fit the description of invertebrate organisms as simplified biological systems compared to those represented by vertebrates. However, precisely the increasing complexity revealed by immunocytes makes invertebrate organisms increasingly suitable models for addressing biologically significant and specific questions, while continuing to present the undeniable advantages associated with their ethical and economic sustainability.
Collapse
Affiliation(s)
- Sandro Sacchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.S.); (N.F.)
| | - Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.S.); (N.F.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.S.); (N.F.)
| |
Collapse
|
5
|
Shi C, Lin TH, Qu C. The role of pattern recognition receptors in the innate immune system of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109946. [PMID: 39370020 DOI: 10.1016/j.fsi.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Eriocheir sinensis (Chinese mitten crab) is one of the main economic species in China, which has evolved an extremely sophisticated innate immune system to fend off disease invasions. However, bacterial and viral infections have caused significant financial losses for the E. sinensis aquaculture in recent years. Making well-informed judgments for the control microbial infections would require a thorough understanding and clarification of the intricate innate immune system of E. sinensis. Innate immunity is essential for the host's defense against invasive pathogens. Pattern recognition receptors (PRRs) initially recognize pathogen-associated molecular patterns (PAMPs) and trigger an innate immune response, causing the generation of inflammatory cytokine and promoting the clearance and control of pathogens. In E. sinensis, Toll/Toll-like receptors, lipopolysaccharide and β-1,3-glucan binding proteins, C-type lectins, galactoside-binding lectins, L-type lectins, scavenger receptors, and down syndrome cell adhesion molecules have been identified to be PRRs that are involved in the recognition of bacteria, fungi, and viruses. In this review, we give a comprehensive overview of the literature regarding PRRs' roles in the immunological defenses of E. sinensis, with the aim of providing clues to the mechanisms of innate immunity.
Collapse
Affiliation(s)
- Chenchen Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China.
| | - Chen Qu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
6
|
Zhang XL, Shen GQ, Zhang XN, Zhao YH, Li WW, Wang Q. Immune functions of the Dscam extracellular variable region in Chinese mitten crab. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108850. [PMID: 37244319 DOI: 10.1016/j.fsi.2023.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
In arthropods, there is only a single copy of Down Syndrome Cell Adhesion Molecule (Dscam) in the genome, but it can exist as numerous splice variants. There are three hypervariable exons in the extracellular domain and one hypervariable exon in the transmembrane domain. In Chinese mitten crab (Eriocheir sinensis), exons 4, 6 and 14 can produce 25, 34 and 18 alternative splice variants, respectively. In this study, through Illumina sequencing, we identified additional splice variants for exons 6 and 14, hence there may be > 50,000 Dscam protein variants. Sequencing of exons 4, 6 and 14 showed that alternative splicing was altered after bacterial stimulation. Therefore, we expressed and purified the extracellular variable region of Dscam (EsDscam-Ig1-Ig7). Exons 4.3, 6.46 and 14.18, three variable exons of the recombinant protein, were randomly selected. The functions of EsDscam-Ig1-Ig7 in immune defences of E. sinensis were subsequently explored. EsDscam-Ig1-Ig7 was discovered to bind to both Gram-positive Staphylococcus aureus and Gram-negative Vibrio parahaemolyticus, but it did not exhibit antibacterial activity. By promoting hemocyte phagocytosis and bacterial removal, EsDscam-Ig1-Ig7 can also shield the host from bacterial infection. The findings highlight the immunological activities of Dscam alternative splicing and reveal the potential for many more Dscam isoforms than were previously predicted in E. sinensis.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Guo-Qing Shen
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiao-Na Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yue-Hong Zhao
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|