1
|
Hauser KA, Garvey CN, Crow RS, Hossainey MRH, Howard DT, Ranganathan N, Gentry LK, Yaparla A, Kalia N, Zelle M, Jones EJ, Duttargi AN, Rollins-Smith LA, Muletz-Wolz CR, Grayfer L. Amphibian mast cells serve as barriers to chytrid fungus infections. eLife 2024; 12:RP92168. [PMID: 39082933 PMCID: PMC11290838 DOI: 10.7554/elife.92168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Global amphibian declines are compounded by deadly disease outbreaks caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd). Much has been learned about the roles of amphibian skin-produced antimicrobial components and microbiomes in controlling Bd, yet almost nothing is known about the roles of skin-resident immune cells in anti-Bd defenses. Mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like skin. Accordingly, we investigated the roles of Xenopus laevis frog mast cells during Bd infections. Our findings indicate that enrichment of X. laevis skin mast cells confers anti-Bd protection and ameliorates the inflammation-associated skin damage caused by Bd infection. This includes a significant reduction in infiltration of Bd-infected skin by neutrophils, promoting mucin content within cutaneous mucus glands, and preventing Bd-mediated changes to skin microbiomes. Mammalian mast cells are known for their production of the pleiotropic interleukin-4 (IL4) cytokine and our findings suggest that the X. laevis IL4 plays a key role in manifesting the effects seen following cutaneous mast cell enrichment. Together, this work underscores the importance of amphibian skin-resident immune cells in anti-Bd defenses and illuminates a novel avenue for investigating amphibian host-chytrid pathogen interactions.
Collapse
Affiliation(s)
- Kelsey A Hauser
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Christina N Garvey
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Ryley S Crow
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Muhammad RH Hossainey
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Dustin T Howard
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Netra Ranganathan
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Lindsey K Gentry
- Center for Conservation Genomics, Smithsonian National Zoo & Conservation Biology InstituteWashingtonUnited States
| | - Amulya Yaparla
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Namarta Kalia
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Mira Zelle
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Elizabeth J Jones
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown UniversityWashingtonUnited States
| | - Anju N Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown UniversityWashingtonUnited States
| | - Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology, and of Pediatrics, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian National Zoo & Conservation Biology InstituteWashingtonUnited States
| | - Leon Grayfer
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| |
Collapse
|
2
|
Ackerman SJ, Stacy NI. Considerations on the evolutionary biology and functions of eosinophils: what the "haeckel"? J Leukoc Biol 2024; 116:247-259. [PMID: 38736141 PMCID: PMC11288384 DOI: 10.1093/jleuko/qiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
The origins and evolution of the eosinophilic leukocyte have received only scattered attention since Paul Ehrlich first named this granulocyte. Studies suggest that myeloperoxidase, expressed by granulocytes, and eosinophil peroxidase diverged some 60 to 70 million years ago, but invertebrate to vertebrate evolution of the eosinophil lineage is unknown. Vertebrate eosinophils have been characterized extensively in representative species at light microscopic, ultrastructural, genetic, and biochemical levels. Understanding of eosinophil function continues to expand and includes to date regulation of "Local Immunity And/Or Remodeling/Repair" (the so-called LIAR hypothesis), modulation of innate and adaptive immune responses, maintenance of tissue and metabolic homeostasis, and, under pathologic conditions, inducers of tissue damage, repair, remodeling, and fibrosis. This contrasts with their classically considered primary roles in host defense against parasites and other pathogens, as well as involvement in T-helper 2 inflammatory and immune responses. The eosinophils' early appearance during evolution and continued retention within the innate immune system across taxa illustrate their importance during evolutionary biology. However, successful pregnancies in eosinophil-depleted humans/primates treated with biologics, host immune responses to parasites in eosinophil-deficient mice, and the absence of significant developmental or functional abnormalities in eosinophil-deficient mouse strains under laboratory conditions raise questions of the continuing selective advantages of the eosinophil lineage in mammals and humans. The objectives of this review are to provide an overview on evolutionary origins of eosinophils across the animal kingdom, discuss some of their main functions in the context of potential evolutionary relevance, and highlight the need for further research on eosinophil functions and functional evolution.
Collapse
Affiliation(s)
- Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, MBRB2074, MC669, 900 S. Ashland Ave, Chicago, IL 60607, United States
| | - Nicole I Stacy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL 32610, United States
| |
Collapse
|
3
|
Gan Q, Chi H, Liang C, Zhang L, Dalmo RA, Sheng X, Tang X, Xing J, Zhan W. Ontogeny of myeloperoxidase (MPO) positive cells in flounder (Paralichthys olivaceus). Mol Immunol 2024; 170:26-34. [PMID: 38603988 DOI: 10.1016/j.molimm.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/22/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Neutrophils represent an important asset of innate immunity. Neutrophils express myeloperoxidase (MPO) which is a heme-containing peroxidase involved in microbial killing. In this study, by using real-time quantitative PCR and Western blot analysis, the flounder MPO (PoMPO) was observed to be highly expressed in the head kidney, followed by spleen, gill, and intestine during ontogeny - during developmental stages from larvae to adults. Furthermore, PoMPO positive cells were present in major immune organs of flounder at all developmental stages, and the number of neutrophils was generally higher as the fish grew to a juvenile stage. In addition, flow cytometry analysis revealed that the proportion of PoMPO positive cells relative to leukocytes, in the peritoneal cavity, head kidney, and peripheral blood of flounder juvenile stage was 18.3 %, 34.8 %, and 6.0 %, respectively, which is similar to the adult stage in flounder as previously reported. The presence and tissue distribution of PoMPO during ontogeny suggests that PoMPO positive cells are indeed a player of the innate immunity at all developmental stages of flounder.
Collapse
Affiliation(s)
- Qiujie Gan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Chengcheng Liang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Letao Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Yang Y, Yang R, Deng F, Yang L, Yang G, Liu Y, Tian Q, Wang Z, Li A, Shang L, Cheng G, Zhang L. Immunoactivation by Cutaneous Blue Light Irradiation Inhibits Remote Tumor Growth and Metastasis. ACS Pharmacol Transl Sci 2024; 7:1055-1068. [PMID: 38633599 PMCID: PMC11019738 DOI: 10.1021/acsptsci.3c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
An improved innate immunity will respond quickly to pathogens and initiate efficient adaptive immune responses. However, up to now, there have been limited clinical ways for effective and rapid consolidation of innate immunity. Here, we report that cutaneous irradiation with blue light of 450 nm rapidly stimulates the innate immunity through cell endogenous reactive oxygen species (ROS) regulation in a noninvasive way. The iron porphyrin-containing proteins, mitochondrial cytochrome c (Cyt-c), and cytochrome p450 (CYP450) can be mobilized by blue light, which boosts electron transport and ROS production in epidermal and dermal tissues. As a messenger of innate immune activation, the increased level of ROS activates the NF-κB signaling pathway and promotes the secretion of immunomodulatory cytokines in skin. Initiated from skin, a regulatory network composed of cytokines and immune cells is established through the circulation system for innate immune activation. The innate immunity activated by whole-body blue light irradiation inhibits tumor growth and metastasis by increasing the infiltration of antitumor neutrophils and tumor-associated macrophages. Our results elucidate the remote immune modulation mechanism of blue light and provide a clinically applicable way for innate immunity activation.
Collapse
Affiliation(s)
- Yingchun Yang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Rong Yang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Fangqing Deng
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Luqiu Yang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Guanghao Yang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanyan Liu
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qing Tian
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zixi Wang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Aipeng Li
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Li Shang
- School
of Materials Science and Engineering, Northwestern
Polytechnical University, Xi’an 710072, China
| | - Genyang Cheng
- Department
of Nephrology, the First Affiliated Hospital
of Zhengzhou University, Zhengzhou 450052, China
| | - Lianbing Zhang
- Key
Laboratory for Space Bioscience & Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
5
|
Douglas AJ, Katzenback BA. The wood frog (Rana sylvatica): An emerging comparative model for anuran immunity and host-ranavirus interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104733. [PMID: 37550009 DOI: 10.1016/j.dci.2023.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 08/09/2023]
Abstract
The wood frog (Rana sylvatica) is widely distributed across North America and is the only amphibian found north of the Arctic Circle due to its remarkable ability to tolerate whole-body freezing. Recent mass mortalities attributable to Ranavirus spp. (family Iridoviridae) in wild juvenile wood frogs, coupled with the apparent high susceptibility of wood frogs to experimental infection with frog virus 3 (FV3), the type species of the Ranavirus genus, or FV3-like isolates underscore the serious threat ranaviruses poses to wood frog populations. Despite the ecological relevance and unique life history of wood frogs, our understanding of the wood frog immune system and antiviral response to ranaviral infections is in its infancy. Here we aim to (1) synthesize the limited knowledge of wood frog immune defences, (2) review recent progress in establishing the wood frog as a study system for ranavirus infection, and (3) highlight the future use of wood frogs as a model anuran to provide insight into the evolution of anuran immune systems and antiviral responses.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| |
Collapse
|