1
|
Guan L, Li X, Chen J, Wang L, Zhang X, Sun H, Li Y, Yang M, Qin Q, Wang S. Co-infection of nervous necrosis virus and Vibrio harveyi increased mortality and worsened the disease severity in the orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110117. [PMID: 39793911 DOI: 10.1016/j.fsi.2025.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Co-infections of different pathogenic microorganisms usually cause complex effects, and receive more attention. Red-grouper nervous necrosis virus (RGNNV) and Vibrio are the common viral and bacterial pathogens of fish, and are often detected simultaneously in diseased fish. However, the understanding of co-infection of RGNNV and Vibrio is still unclear. In this study, we have established a grouper (Epinephelus coioides) model of the co-infection of RGNNV and Vibrio harveyi (V. harveyi). Compared with single pathogen infection, co-infection of RGNNV and V. harveyi significantly caused more severe pathologic changes with higher mortality (P < 0.05), and promoted the proliferation of the pathogens by RNA-FISH and qRT-PCR (P < 0.05), demonstrating a synergistic effect of RGNNV and V. harveyi in grouper. Furthermore, we found that V. harveyi inhibited the induction and migration of neutrophils by RGNNV, resulting the obviously reduced neutrophils of co-infection groups (P < 0.05). In addition, transcriptome analysis showed that differentially expressed genes (DEGs) of brain tissues of different experimental groups were enriched in immune signaling pathways, such as JAK-STAT signaling, NF-κB signaling and TNF signaling pathways. For the liver and spleen tissues, the DEGs of different experimental groups were enriched in metabolism-related pathways, such as glycolysis/gluconeogenesis and glycerolipid metabolism. Further analysis of the selected DEGs, co-infection of RGNNV and V. harveyi significantly suppressed the host immune response and up-regulated host glucose and lipid metabolism, compared with single-pathogen infection. Taken together, the RGNNV and V. harveyi make synergic reaction in grouper, possibly due to the down regulation of host immune response and up regulation of metabolism to facilitate the replication of both pathogens. These results provide new insights into the pathogenesis of multiple pathogens, and contribute to develop new therapies.
Collapse
Affiliation(s)
- Lingfeng Guan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xinshuai Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jinpeng Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Liqun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xinyue Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hongyan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yanwei Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, PR China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, PR China.
| | - Shaowen Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
2
|
Lei YR, He JY, Fu XM, Huang CF, Lin YX, Dai LL, Chen ZA, Zhang ZP, Liu FM, Qin QW, Sun HY. Epinephelus coioides Sec3 promotes Singapore grouper iridovirus infection by negatively regulates immune response. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109784. [PMID: 39067495 DOI: 10.1016/j.fsi.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/19/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Exocyst, a protein complex, plays a crucial role in various cellular functions, including cell polarization, migration, invasion, cytokinesis, and autophagy. Sec3, known as Exoc1, is a key subunit of the Exocyst complex and can be involved in cell survival and apoptosis. In this study, two subtypes of Sec3 were isolated from Epinephelus coioides, an important marine fish in China. The role of E. coioides Sec3 was explored during Singapore grouper iridovirus (SGIV) infection, an important pathogen of marine fish which could induce 90 % mortality. E. coioides Sec3 sequences showed a high similarity with that from other species, indicating the presence of a conserved Sec3 superfamily domain. E. coioides Sec3 mRNA could be detected in all examined tissues, albeit at varying expression levels. SGIV infection could upregulate E. coioides Sec3 mRNA. Upregulated Sec3 significantly promoted SGIV-induced CPE, and the expressions of viral key genes. E. coioides Sec3 could inhibit the activation of NF-κB and AP-1, as well as SGIV-induced cell apoptosis. The results illustrated that E. coioides Sec3 promotes SGIV infection by regulating the innate immune response.
Collapse
Affiliation(s)
- Yu-Rong Lei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jia-Yang He
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xue-Mei Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Cui-Fen Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yun-Xiang Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Li-Ling Dai
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Zi-An Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Ze-Peng Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Fu-Min Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Qi-Wei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| | - Hong-Yan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| |
Collapse
|
3
|
Liang X, Liang J, Cao J, Liu S, Wang Q, Ning Y, Liang Z, Zheng J, Zhang Z, Luo J, Chen Y, Huang X, Huang Y, Qin Q, Zhou S. Oral immunizations with Bacillus subtilis spores displaying VP19 protein provide protection against Singapore grouper iridovirus (SGIV) infection in grouper. FISH & SHELLFISH IMMUNOLOGY 2023:108860. [PMID: 37257567 DOI: 10.1016/j.fsi.2023.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Disease caused by Singapore grouper iridovirus (SGIV) results in major economic losses in the global grouper aquaculture industry. Vaccination is considered to be the most effective way to protect grouper from SGIV. In this study, the spores of Bacillus subtilis (B.subtilis) WB600 were utilized as the vehicle that the VP19 protein was displayed on the spores surface. To further investigate the effect of oral vaccination, the grouper were orally immunized with B.s-CotC-19 spores. After challenged, the survival rate of grouper orally vaccinated with B.s-CotC-19 spores was 34.5% and the relative percent survival (RPS) was 28.7% compared to the PBS group. Moreover, the viral load in the tissues of the B.s-CotC-19 group was significantly lower than that of the PBS group. The histopathological sections of head kidney and liver tissue from the B.s-CotC-19 group showed significantly less histopathology compared to the PBS group. In addition, the specific IgM levels in serum in the B.s-CotC-19 group was higher than those in the PBS group. In the hindgut tissue, the immune-related gene expression detected by quantitative real-time PCR (qRT-PCR) exhibited an increasing trend in different degrees in the B.s-CotC-19 group, suggesting that the innate and adaptive immune responses were activated. These results indicated that the oral administration of recombinant B.subtilis spores was effective for preventing SGIV infection. This study provided a feasible strategy for the controlling of fish virus diseases.
Collapse
Affiliation(s)
- Xia Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Junjia Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jinqiao Cao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shijia Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Quan Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yunshang Ning
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zengjian Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaying Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zemiao Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiayi Luo
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingjing Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, China
| | - Yan Huang
- ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, China.
| | - Sheng Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, China.
| |
Collapse
|