1
|
Villa M, Koirala N, Perdue MV, Branum-Martin L, Landi N. How does SES influence the brain circuitry for literacy? Modeling the association between SES, oral language, white matter integrity, and reading. Dev Cogn Neurosci 2025; 73:101561. [PMID: 40319671 PMCID: PMC12099765 DOI: 10.1016/j.dcn.2025.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
Reading is pivotal for educational and occupational success, hence, understanding the factors contributing to reading skill variation is a major educational objective. Although cognitive and neurobiological factors that influence reading are well documented, the contributions of environmental factors, such as socioeconomic status (SES), fiv to reading-related neurobiology are relatively understudied. Studies have shown that SES predicts reading and the integrity of reading-related white matter tracts; however, the direct and indirect contributions of SES to reading via white matter integrity remain undifferentiated. Further, while oral language (both phonological awareness [PA] and vocabulary) has been positively associated with both SES and reading, only a few studies have attempted to model the SES-reading association via oral language, and none of them included white matter integrity. The current study closes these gaps by using Structural Equation Modeling in a large sample of children from the Healthy Brain Network biobank, testing the (in)direct paths by which SES (parental education) influences reading through oral language and white matter integrity. Results reveal an effect of SES on reading that is indirectly affected by oral language, though not by white matter integrity. These findings reinforce the role of oral language skills as a key pathway linking SES and reading.
Collapse
Affiliation(s)
- Martina Villa
- Department of Psychological Sciences, University of Connecticut, USA; Child Study Center, Yale University, USA.
| | - Nabin Koirala
- Child Study Center, Yale University, USA; Brain Imaging Research Core, University of Connecticut, USA; Nathan Kline Institute for Psychiatric Research, USA
| | - Meaghan V Perdue
- University of Massachusetts Chan Medical School, Department of Psychiatry, USA; Alberta Children's Hospital Research Institute, Canada
| | | | - Nicole Landi
- Department of Psychological Sciences, University of Connecticut, USA; Child Study Center, Yale University, USA
| |
Collapse
|
2
|
Zhao J, Zhao Y, Song Z, Liu J, Thiebaut de Schotten M, Ramus F. A decade of white matter connectivity studies in developmental dyslexia. PSYCHORADIOLOGY 2024; 4:kkae029. [PMID: 39802423 PMCID: PMC11718513 DOI: 10.1093/psyrad/kkae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Affiliation(s)
- Jingjing Zhao
- Department of Psychology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yueye Zhao
- School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Zujun Song
- School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Jianyi Liu
- School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Michel Thiebaut de Schotten
- Institut des Maladies Neurodégénératives-UMR5293, CNRS, CEA, University of Bordeaux, Bordeaux 33000, France
- Brain Connectivity and Behavior Laboratory, Paris 75013, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris 75005, France
| |
Collapse
|
3
|
Su M, Fan Y, Wu J, Qiao B, Zhou W. The influence of the literacy environment on children's writing development in Chinese. Front Psychol 2022; 13:1010471. [PMID: 36312056 PMCID: PMC9606812 DOI: 10.3389/fpsyg.2022.1010471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
The present study investigated the influence of literacy environment on the performance of writing narratives for primary school students. Two hundred and fifty Chinese children participated in this study. There were 146 third graders (71 boys and 75 girls) and 104 fifth graders (53 boys and 51 girls). Results showed that children's writing abilities differed at the word level and sentence level between third grade and fifth grade. Formal literacy experience (parent teaching of characters) predicted the writing performance of third graders, while informal literacy experience (the visiting frequency of various places) predicted the writing performance of fifth graders. After controlling the effect of reading efficiency on the writing skills, the prediction of formal and informal literacy experiences on the writing performance remained. The results suggest the importance of formal and informal literacy experiences on the writing development of primary school students.
Collapse
Affiliation(s)
- Mengmeng Su
- College of Elementary Education, Capital Normal University, Beijing, China
| | - Yi Fan
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Jifeng Wu
- College of International Education, Capital Normal University, Beijing, China
| | - Bingyan Qiao
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Wei Zhou
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
4
|
Gao Y, Meng X, Bai Z, Liu X, Zhang M, Li H, Ding G, Liu L, Booth JR. Left and Right Arcuate Fasciculi Are Uniquely Related to Word Reading Skills in Chinese-English Bilingual Children. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:109-131. [PMID: 37215330 PMCID: PMC10158580 DOI: 10.1162/nol_a_00051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 07/10/2021] [Indexed: 05/24/2023]
Abstract
Whether reading in different writing systems recruits language-unique or language-universal neural processes is a long-standing debate. Many studies have shown the left arcuate fasciculus (AF) to be involved in phonological and reading processes. In contrast, little is known about the role of the right AF in reading, but some have suggested that it may play a role in visual spatial aspects of reading or the prosodic components of language. The right AF may be more important for reading in Chinese due to its logographic and tonal properties, but this hypothesis has yet to be tested. We recruited a group of Chinese-English bilingual children (8.2 to 12.0 years old) to explore the common and unique relation of reading skill in English and Chinese to fractional anisotropy (FA) in the bilateral AF. We found that both English and Chinese reading skills were positively correlated with FA in the rostral part of the left AF-direct segment. Additionally, English reading skill was positively correlated with FA in the caudal part of the left AF-direct segment, which was also positively correlated with phonological awareness. In contrast, Chinese reading skill was positively correlated with FA in certain segments of the right AF, which was positively correlated with visual spatial ability, but not tone discrimination ability. Our results suggest that there are language universal substrates of reading across languages, but that certain left AF nodes support phonological mechanisms important for reading in English, whereas certain right AF nodes support visual spatial mechanisms important for reading in Chinese.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiangzhi Meng
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing, China
- PekingU-PolyU Center for Child Development and Learning, Beijing, China
| | - Zilin Bai
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xin Liu
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Manli Zhang
- Department of Cognitive Neuroscience and Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Hehui Li
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - James R. Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Girard C, Bastelica T, Léone J, Epinat-Duclos J, Longo L, Prado J. Nurturing the reading brain: home literacy practices are associated with children's neural response to printed words through vocabulary skills. NPJ SCIENCE OF LEARNING 2021; 6:34. [PMID: 34862413 PMCID: PMC8642429 DOI: 10.1038/s41539-021-00112-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Previous studies indicate that children are exposed to different literacy experiences at home. Although these disparities have been shown to affect children's literacy skills, it remains unclear whether and how home literacy practices influence brain activity underlying word-level reading. In the present study, we asked parents of French children from various socioeconomic backgrounds (n = 66; 8.46 ± 0.36 years, range 7.52-9.22; 20 girls) to report the frequency of home literacy practices. Neural adaptation to the repetition of printed words was then measured using functional magnetic resonance imaging (fMRI) in a subset of these children (n = 44; 8.49 ± 0.33 years, range 8.02-9.14; 13 girls), thereby assessing how sensitive was the brain to the repeated presentation of these words. We found that more frequent home literacy practices were associated with enhanced word adaptation in the left posterior inferior frontal sulcus (r = 0.32). We also found that the frequency of home literacy practices was associated with children's vocabulary skill (r = 0.25), which itself influenced the relation between home literacy practices and neural adaptation to words. Finally, none of these effects were observed in a digit adaptation task, highlighting their specificity to word recognition. These findings are consistent with a model positing that home literacy experiences may improve children's vocabulary skill, which in turn may influence the neural mechanisms supporting word-level reading.
Collapse
Affiliation(s)
- Cléa Girard
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 - CNRS UMR5292, University of Lyon, 69500, Bron, France.
| | - Thomas Bastelica
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 - CNRS UMR5292, University of Lyon, 69500, Bron, France
| | - Jessica Léone
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 - CNRS UMR5292, University of Lyon, 69500, Bron, France
| | - Justine Epinat-Duclos
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 - CNRS UMR5292, University of Lyon, 69500, Bron, France
| | - Léa Longo
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 - CNRS UMR5292, University of Lyon, 69500, Bron, France
| | - Jérôme Prado
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 - CNRS UMR5292, University of Lyon, 69500, Bron, France.
| |
Collapse
|
6
|
White matter variability, cognition, and disorders: a systematic review. Brain Struct Funct 2021; 227:529-544. [PMID: 34731328 PMCID: PMC8844174 DOI: 10.1007/s00429-021-02382-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
Inter-individual differences can inform treatment procedures and—if accounted for—have the potential to significantly improve patient outcomes. However, when studying brain anatomy, these inter-individual variations are commonly unaccounted for, despite reports of differences in gross anatomical features, cross-sectional, and connectional anatomy. Brain connections are essential to facilitate functional organization and, when severed, cause impairments or complete loss of function. Hence, the study of cerebral white matter may be an ideal compromise to capture inter-individual variability in structure and function. We reviewed the wealth of studies that associate cognitive functions and clinical symptoms with individual tracts using diffusion tractography. Our systematic review indicates that tractography has proven to be a sensitive method in neurology, psychiatry, and healthy populations to identify variability and its functional correlates. However, the literature may be biased, as the most commonly studied tracts are not necessarily those with the highest sensitivity to cognitive functions and pathologies. Additionally, the hemisphere of the studied tract is often unreported, thus neglecting functional laterality and asymmetries. Finally, we demonstrate that tracts, as we define them, are not correlated with one, but multiple cognitive domains or pathologies. While our systematic review identified some methodological caveats, it also suggests that tract–function correlations might still be a promising tool in identifying biomarkers for precision medicine. They can characterize variations in brain anatomy, differences in functional organization, and predicts resilience and recovery in patients.
Collapse
|
7
|
Polspoel B, Vandermosten M, De Smedt B. The value of structural brain imaging in explaining individual differences in children's arithmetic fluency. Cortex 2021; 144:99-108. [PMID: 34666301 DOI: 10.1016/j.cortex.2021.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/11/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022]
Abstract
How do different measures of brain structure correlate with individual differences in arithmetic fluency? This paper builds on two previously published studies in which individual differences in children's arithmetic fluency were correlated with measures of white (Polspoel et al., 2019) and grey matter (Polspoel et al., 2020) in one sample of children. We combined the brain imaging data of these two studies with measures of cognitive abilities that have been shown to be predictive of arithmetic fluency, i.e., numerical magnitude processing, working memory and rapid automatized naming (RAN). This allowed us to investigate to which extend the observed structural brain imaging measures uniquely correlated with children's arithmetic fluency, on top of each other as well as on top of the abovementioned cognitive variables. Participants were 43 typically developing 9-10-year-olds. All measures were added to a hierarchical multiple regression model. This regression model showed that the white matter integrity of the right inferior longitudinal fasciculus and the cortical complexity of the left postcentral gyrus remained unique predictors of individual differences in arithmetic when the abovementioned cognitive variables were taken into account. This indicates that structural neuroimaging measures can explain individual differences in arithmetic performance that are not merely accounted for by relevant cognitive predictors.
Collapse
Affiliation(s)
- Brecht Polspoel
- Parenting and Special Education Research Unit, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium.
| | - Maaike Vandermosten
- Experimental ORL, Department of Neurosciences, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium.
| | - Bert De Smedt
- Parenting and Special Education Research Unit, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium.
| |
Collapse
|
8
|
Liu S, Ren Q, Gong G, Sun Y, Zhao B, Ma X, Zhang N, Zhong S, Lin Y, Wang W, Zheng R, Yu X, Yun Y, Zhang D, Shao K, Lin P, Yuan Y, Dai T, Zhang Y, Li L, Li W, Zhao Y, Shan P, Meng X, Yan C. Hippocampal subfield and anterior-posterior segment volumes in patients with sporadic amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2021; 32:102816. [PMID: 34655906 PMCID: PMC8523912 DOI: 10.1016/j.nicl.2021.102816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Neuroimaging studies of hippocampal volumes in patients with amyotrophic lateral sclerosis (ALS) have reported inconsistent results. Our aims were to demonstrate that such discrepancies are largely due to atrophy of different regions of the hippocampus that emerge in different disease stages of ALS and to explore the existence of co-pathology in ALS patients. We used the well-validated King’s clinical staging system for ALS to classify patients into different disease stages. We investigated in vivo hippocampal atrophy patterns across subfields and anterior-posterior segments in different King’s stages using structural MRI in 76 ALS patients and 94 health controls (HCs). The thalamus, corticostriatal tract and perforant path were used as structural controls to compare the sequence of alterations between these structures and the hippocampal subfields. Compared with HCs, ALS patients at King’s stage 1 had lower volumes in the bilateral posterior subiculum and presubiculum; ALS patients at King’s stage 2 exhibited lower volumes in the bilateral posterior subiculum, left anterior presubiculum and left global hippocampus; ALS patients at King’s stage 3 showed significantly lower volumes in the bilateral posterior subiculum, dentate gyrus and global hippocampus. Thalamic atrophy emerged at King’s stage 3. White matter tracts remained normal in a subset of ALS patients. Our study demonstrated that the pattern of hippocampal atrophy in ALS patients varies greatly across King’s stages. Future studies in ALS patients that focus on the hippocampus may help to further clarify possible co-pathologies in ALS.
Collapse
Affiliation(s)
- Shuangwu Liu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China; Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingguo Ren
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yuan Sun
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Bing Zhao
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaotian Ma
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Na Zhang
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Suyu Zhong
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenqing Wang
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Zheng
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaolin Yu
- Department of Gerontology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Yun
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Dong Zhang
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kai Shao
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Pengfei Lin
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Yuan
- Sleep Medicine Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Tingjun Dai
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongqing Zhang
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Ling Li
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wei Li
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peiyan Shan
- Department of Gerontology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiangshui Meng
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
9
|
Rakesh D, Whittle S. Socioeconomic status and the developing brain - A systematic review of neuroimaging findings in youth. Neurosci Biobehav Rev 2021; 130:379-407. [PMID: 34474050 DOI: 10.1016/j.neubiorev.2021.08.027] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
A growing literature has shown associations between socioeconomic disadvantage and neural properties (such as brain structure and function). In this review, we aimed to synthesize findings on the neural correlates of socioeconomic status (SES) in youth samples across neuroimaging modalities. We also aimed to disentangle the effects of different SES measures (e.g., parent income and education) in our synthesis. We found relatively consistent patterns of positive associations between SES and both volume and cortical surface area of frontal regions, and amygdala, hippocampal, and striatal volume (with most consistent results for composite SES indices). Despite limited longitudinal work, results suggest that SES is associated with developmental trajectories of gray matter structure. Higher SES was also found to be associated with increased fractional anisotropy of some white matter tracts, although there were more null than positive findings. Finally, methodological heterogeneity in brain function and connectivity studies prevented us from making strong inferences. Based on our findings, we make recommendations for future research, discuss the role of mitigating factors, and implications for policy.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia.
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
| |
Collapse
|
10
|
Meng X, Sun C, Du B, Liu L, Zhang Y, Dong Q, Georgiou GK, Nan Y. The development of brain rhythms at rest and its impact on vocabulary acquisition. Dev Sci 2021; 25:e13157. [PMID: 34258830 DOI: 10.1111/desc.13157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/27/2022]
Abstract
A long-standing question in developmental science is how the neurodevelopment of the brain influences cognitive functions. Here, we examined the developmental change of resting EEG power and its links to vocabulary acquisition in school-age children. We further explored what mechanisms may mediate the relation between brain rhythm maturation and vocabulary knowledge. Eyes-opened resting-state EEG data were recorded from 53 typically-developing Chinese children every 2 years between the ages of 7 and 11. Our results showed first that delta, theta, and gamma power decreased over time, whereas alpha and beta power increased over time. Second, after controlling for general cognitive abilities, age, home literacy environment, and phonological skills, theta decreases explained 6.9% and 14.4% of unique variance in expressive vocabulary at ages 9 and 11, respectively. We also found that beta increase from age 7 to 9 significantly predicted receptive vocabulary at age 11. Finally, theta decrease predicted expressive vocabulary through the effects of phoneme deletion at age 9 and tone discrimination at age 11. These results substantiate the important role of brain oscillations at rest, especially theta rhythm, in language development. The developmental change of brain rhythms could serve as sensitive biomarkers for vocabulary development in school-age children, which would be of great value in identifying children at risk of language impairment.
Collapse
Affiliation(s)
- Xiangyun Meng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chen Sun
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yuxuan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - George K Georgiou
- Department of Educational Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Yun Nan
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|