1
|
Zeng K, Wu H, Zhao GX, Wang ZF, Su MR, Zhang ZY, Wang Y, Zhong H. Mid-Sagittal MRI Morphometry of the Corpus Callosum in High-Altitude Tibetan Populations: A Novel Quantitative Approach Using Circularity and Eccentricity. J Craniofac Surg 2025:00001665-990000000-02729. [PMID: 40367501 DOI: 10.1097/scs.0000000000011496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND The corpus callosum plays a crucial role in interhemispheric communication. Although callosal circularity has demonstrated promise as a marker for differentiating a range of neurological conditions, research investigating the impact of chronic high-altitude hypoxia on corpus callosum morphology remains limited. This study aims to investigate the circularity and eccentricity of the corpus callosum in Tibetan adults, as well as their interrelationship, to assess how the hypoxic environment influences corpus callosum morphology. METHODS This study enrolled 262 Tibetan adults. MRI scans were employed to obtain measurements of callosal length, height, perimeter, and area, from which circularity and eccentricity values were derived. Statistical analyses involved Mann-Whitney U tests to evaluate sex differences, partial correlation analyses to assess age effects, and quadratic regression models to elucidate the relationship between circularity and eccentricity. RESULTS The analysis revealed no statistically significant sex differences in either circularity or eccentricity. Circularity exhibited a biphasic, inverted U-shaped trajectory across the lifespan, reaching a peak at 22.8 years, with men attaining peak values earlier than women. Moreover, a significant quadratic relationship between circularity and eccentricity was identified, delineating a critical threshold at an eccentricity value of 0.939. CONCLUSIONS Although the high-altitude hypoxic environment does not markedly alter the overall stability of callosal circularity and eccentricity, deviations from normative values may serve as sensitive biomarkers for neurological anomalies. These novel morphological metrics provide valuable quantitative insights into corpus callosum integrity, potentially facilitating the early detection of neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ke Zeng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Hao Wu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Guo-Xu Zhao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Zhan-Fei Wang
- Department of Radiology, Tibet Fukang Hospital, Lhasa, Xizang
| | - Ming-Ran Su
- Department of Radiology, Tibet Fukang Hospital, Lhasa, Xizang
| | - Zhi-Ying Zhang
- Department of Radiology, Tibet Fukang Hospital, Lhasa, Xizang
| | - Yu Wang
- Department of Radiology, Tibet Fukang Hospital, Lhasa, Xizang
| | - Hua Zhong
- Department of Anatomy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Tang W, Wang Q, Sun M, Liu C, Huang Y, Zhou M, Zhang X, Meng Z, Zhang J. The gut microbiota-oligodendrocyte axis: A promising pathway for modulating oligodendrocyte homeostasis and demyelination-associated disorders. Life Sci 2024; 354:122952. [PMID: 39127317 DOI: 10.1016/j.lfs.2024.122952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The bidirectional regulation between the gut microbiota and brain, known as gut-brain axis, has received significant attention. The myelin sheath, produced by oligodendrocytes or Schwann cells, is essential for efficient nervous signal transmission and the maintenance of brain function. Growing evidence shows that both oligodendrogenesis and myelination are modulated by gut microbiota and its metabolites, and when dysbiosis occurs, changes in the microbiota composition and/or associated metabolites may impact developmental myelination and the occurrence of neurodevelopmental disabilities. Although the link between the microbiota and demyelinating disease such as multiple sclerosis has been extensively studied, our knowledge about the role of the microbiota in other myelin-related disorders, such as neurodegenerative diseases, is limited. Mechanistically, the microbiota-oligodendrocyte axis is primarily mediated by factors such as inflammation, the vagus nerve, endocrine hormones, and microbiota metabolites as evidenced by metagenomics, metabolomics, vagotomy, and morphological and molecular approaches. Treatments targeting this axis include probiotics, prebiotics, microbial metabolites, herbal bioactive compounds, and specific dietary management. In addition to the commonly used approaches, viral vector-mediated tracing and gene manipulation, integrated multiomics and multicenter clinical trials will greatly promote the mechanistic and interventional studies and ultimately, the development of new preventive and therapeutic strategies against gut-oligodendrocyte axis-mediated brain impairments. Interestingly, recent findings showed that microbiota dysbiosis can be induced by hippocampal myelin damage and is reversible by myelin-targeted drugs, which provides new insights into understanding how hippocampus-based functional impairment (such as in neurodegenerative Alzheimer's disease) regulates the peripheral homeostasis of microbiota and associated systemic disorders.
Collapse
Affiliation(s)
- Wen Tang
- Department of Gastroenterology, Chongqing Western Hospital, Chongqing 400052, China
| | - Qi Wang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Mingguang Sun
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Department of Neurology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing 100853, China
| | - Chang''e Liu
- Department of Nutrition, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yonghua Huang
- Department of Neurology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Maohu Zhou
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Xuan Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Zhaoyou Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Zhang S, Jiang L, Hu Z, Liu W, Yu H, Chu Y, Wang J, Chen Y. T1w/T2w ratio maps identify children with autism spectrum disorder and the relationships between myelin-related changes and symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111040. [PMID: 38806093 DOI: 10.1016/j.pnpbp.2024.111040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Modern neuroimaging methods have revealed that autistic symptoms are associated with abnormalities in brain morphology, connectivity, and activity patterns. However, the changes in brain microstructure underlying the neurobiological and behavioral deficits of autism remain largely unknown. METHODS we characterized the associated abnormalities in intracortical myelination pattern by constructing cortical T1-weighted/T2-weighted ratio maps. Voxel-wise comparisons of cortical myelination were conducted between 150 children with autism spectrum disorder (ASD) and 139 typically developing (TD) children. Group differences in cortical T1-weighted/T2-weighted ratio and gray matter volume were then examined for associations with autistic symptoms. A convolutional neural network (CNN) model was also constructed to examine the utility of these regional abnormalities in cortical myelination for ASD diagnosis. RESULTS Compared to TD children, the ASD group exhibited widespread reductions in cortical myelination within regions related to default mode, salience, and executive control networks such as the inferior frontal gyrus, bilateral insula, left fusiform gyrus, bilateral hippocampus, right calcarine sulcus, bilateral precentral, and left posterior cingulate gyrus. Moreover, greater myelination deficits in most of these regions were associated with more severe autistic symptoms. In addition, children with ASD exhibited reduced myelination in regions with greater gray matter volume, including left insula, left cerebellum_4_5, left posterior cingulate gyrus, and right calcarine sulcus. Notably, the CNN model based on brain regions with abnormal myelination demonstrated high diagnostic efficacy for ASD. CONCLUSIONS Our findings suggest that microstructural abnormalities in myelination contribute to autistic symptoms and so are potentially promising therapeutic targets as well as biomarkers for ASD diagnosis.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Liping Jiang
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Zhe Hu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Wenjing Liu
- Children Rehabilitation Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Hao Yu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Yao Chu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China
| | - Jiehuan Wang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China.
| | - Yueqin Chen
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, China.
| |
Collapse
|
4
|
Luo J, Qin P, Bi Q, Wu K, Gong G. Individual variability in functional connectivity of human auditory cortex. Cereb Cortex 2024; 34:bhae007. [PMID: 38282455 DOI: 10.1093/cercor/bhae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/30/2024] Open
Abstract
Individual variability in functional connectivity underlies individual differences in cognition and behaviors, yet its association with functional specialization in the auditory cortex remains elusive. Using resting-state functional magnetic resonance imaging data from the Human Connectome Project, this study was designed to investigate the spatial distribution of auditory cortex individual variability in its whole-brain functional network architecture. An inherent hierarchical axis of the variability was discerned, which radiates from the medial to lateral orientation, with the left auditory cortex demonstrating more pronounced variations than the right. This variability exhibited a significant correlation with the variations in structural and functional metrics in the auditory cortex. Four auditory cortex subregions, which were identified from a clustering analysis based on this variability, exhibited unique connectional fingerprints and cognitive maps, with certain subregions showing specificity to speech perception functional activation. Moreover, the lateralization of the connectional fingerprint exhibited a U-shaped trajectory across the subregions. These findings emphasize the role of individual variability in functional connectivity in understanding cortical functional organization, as well as in revealing its association with functional specialization from the activation, connectome, and cognition perspectives.
Collapse
Affiliation(s)
- Junhao Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Peipei Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qiuhui Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
| | - Ke Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|