1
|
Abstract
This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.
Collapse
Affiliation(s)
- Stuart Stokes
- Spinal Unit, Department of Neurosurgery, Hull Royal Infirmary, Hull, UK
| | - Martin Drozda
- Spinal Unit, Department of Neurosurgery, Hull Royal Infirmary, Hull, UK
| | - Christopher Lee
- Spinal Unit, Department of Neurosurgery, Hull Royal Infirmary, Hull, UK
| |
Collapse
|
2
|
Hanuscheck N, Schnatz A, Thalman C, Lerch S, Gärtner Y, Domingues M, Bitar L, Nitsch R, Zipp F, Vogelaar CF. Growth-Promoting Treatment Screening for Corticospinal Neurons in Mouse and Man. Cell Mol Neurobiol 2020; 40:1327-1338. [PMID: 32172457 PMCID: PMC7497511 DOI: 10.1007/s10571-020-00820-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/20/2020] [Indexed: 11/30/2022]
Abstract
Neurons of the central nervous system (CNS) that project long axons into the spinal cord have a poor axon regenerative capacity compared to neurons of the peripheral nervous system. The corticospinal tract (CST) is particularly notorious for its poor regeneration. Because of this, traumatic spinal cord injury (SCI) is a devastating condition that remains as yet uncured. Based on our recent observations that direct neuronal interleukin-4 (IL-4) signaling leads to repair of axonal swellings and beneficial effects in neuroinflammation, we hypothesized that IL-4 acts directly on the CST. Here, we developed a tissue culture model for CST regeneration and found that IL-4 promoted new growth cone formation after axon transection. Most importantly, IL-4 directly increased the regenerative capacity of both murine and human CST axons, which corroborates its regenerative effects in CNS damage. Overall, these findings serve as proof-of-concept that our CST regeneration model is suitable for fast screening of new treatments for SCI.
Collapse
Affiliation(s)
- Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Andrea Schnatz
- Institute for Developmental Biology and Neurobiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Carine Thalman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Steffen Lerch
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Yvonne Gärtner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Micaela Domingues
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Lynn Bitar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Robert Nitsch
- University Medical Center, Institute for Translational Neuroscience, Westfälische Wilhelms-University Münster, Albert-Schweitzer-Campus, 48149, Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Christina F Vogelaar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.
| |
Collapse
|
3
|
Park JH, Kim JH, Oh SK, Baek SR, Min J, Kim YW, Kim ST, Woo CW, Jeon SR. Analysis of equivalent parameters of two spinal cord injury devices: the New York University impactor versus the Infinite Horizon impactor. Spine J 2016; 16:1392-1403. [PMID: 27349631 DOI: 10.1016/j.spinee.2016.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/11/2016] [Accepted: 06/22/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The New York University (NYU) impactor and the Infinite Horizon (IH) impactor are used to create spinal cord injury (SCI) models. However, the parameters of these two devices that yield equivalent SCI severity remain unclear. PURPOSE To identify equivalent parameters, rats with SCIs induced by either device set at various parameters were subjected to behavioral and histologic analyses. STUDY DESIGN This is an animal laboratory study. METHODS Groups of eight rats acquired SCIs by dropping a 10 g rod from a height of 25 mm or 50 mm by using the NYU device or by delivering a force of 150 kdyn, 175 kdyn, 200 kdyn, or 250 kdyn by using the IH impactor. All injured rats were tested weekly for 8 weeks by using the Basso, Beattie, and Bresnahan (BBB) test and the ladder rung test. On the 10th week, the lesion volume of each group was measured by using a 9.4 Tesla magnetic resonance imaging (MRI), and the spinal cords were subjected to histologic analysis using anterograde biotinylated dextran amine (BDA) tracing and immunofluorescence staining with an anti-protein kinase C-gamma (PKC-γ) antibody. RESULTS Basso, Beattie, and Bresnahan test scores between the 25 mm and the 200 kdyn groups as well as between the 50 mm and and 250 kdyn groups were very similar. Although it was not statistically significant, the mean scores of the ladder rung test in the 200 kdyn group were higher than the 25 mm group at all assessment time points. There was a significantly different cavity volume only between the 50 mm and the 200 kdyn groups. Midline sagittal images of the spinal cord on the MRI revealed that the 25 mm group predominantly had dorsal injuries, whereas the 200 kdyn group had deeper injuries. Anterograde tracing with BDA showed that in the 200 kdyn group, the dorsal corticospinal tract of the caudal area of the lesion was labeled. Similar labeling was not observed in the 25 mm group. Immunofluorescence staining of PKC-γ also revealed strong staining of the dorsal corticospinal tract in the 200 kdyn group but not in the 25 mm group. CONCLUSIONS The 25 mm injuries generated by the NYU impactor are generally equivalent to the 200 kdyn injuries generated by using the IH impactor. However, differences in the ladder rung test scores, MRI images, BDA traces, and PKC-γ staining demonstrate that the two devices exert qualitatively different impacts on the spinal cord.
Collapse
Affiliation(s)
- Jin Hoon Park
- Department of Neurological Surgery, Gangneung Asan Hospital, University of Ulsan College of Medicine, Bangdong-gil, 38, Sacheon-myun, Gangneung, Republic of Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Sun-Kyu Oh
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Se Rim Baek
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Joongkee Min
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Yong Whan Kim
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sang Tae Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Chul-Woong Woo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea.
| |
Collapse
|
4
|
Baastrup C, Jensen TS, Finnerup NB. Coexisting mechanical hypersensitivity and anxiety in a rat model of spinal cord injury and the effect of pregabalin, morphine, and midazolam treatment. Scand J Pain 2011; 2:139-145. [DOI: 10.1016/j.sjpain.2011.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Abstract
Background and purpose
Spinal cord injury (SCI) has detrimental consequences that include chronic neuropathic pain, which is seen in 40-50% of patients, and symptoms of anxiety and depression, which affect 13-45% of SCI patients. The coexistence of pain, anxiety, and depression is known from other neuropathic pain conditions, but the relationship between these symptoms is not clear and has not been investigated in a preclinical model of SCI so far.
The aim of this study was to investigate anxiety-like behavior and at-level mechanical hypersensitivity following experimental spinal cord contusion (SCC) in female Sprague-Dawley rats, and the effects of analgesic and anxiolytic drugs.
Methods
Mechanical sensitivity and elevated plus maze (EPM) behavior were measured pre- and postinjury in SCC and sham animals. Pregabalin 30 mg/kg, morphine 3 mg/kg, midazolam 0.5 mg/kg, and 0.9% NaCl were evaluated in a randomly allocated, blinded balanced design.
Results
SCC animals developed persistent at-level mechanical hypersensitivity and decreased open arm activity in the EPM, which indicates an anxiety-like state. Pregabalin, a dual-acting analgesic and anxiolytic drug reduced both hypersensitivity and anxiety-like behavior, while the analgesic drug morphine only reduced hypersensitivity. The anxiolytic drug midazolam in the dose used had no effect on either parameter.
Conclusions
SCC animals developed long lasting coexisting at-level mechanical hypersensitivity and anxiety-like behavior, but there was no evidence to support a causal relationship between pain and anxiety following SCI.
Implications
The findings that at-level mechanical hypersensitivity and anxiety-like behavior develops concomitantly in the spinal cord contusion models and that both symptoms is persistent provide basis for further investigation of the mechanisms and connection behind these two clinically relevant symptoms after injury to the central nervous system.
Collapse
Affiliation(s)
- Cathrine Baastrup
- Danish Pain Research Center , Aarhus University Hospital , Norrebrogade 44, Building 1A, DK-8000 Aarhus C , Aarhus , Denmark
| | - Troels S. Jensen
- Danish Pain Research Center , Aarhus University Hospital , Norrebrogade 44, Building 1A, DK-8000 Aarhus C , Aarhus , Denmark
- Department of Neurology , Aarhus University Hospital , Norrebrogade 44, DK-8000 Aarhus C , Aarhus , Denmark
| | - Nanna B. Finnerup
- Danish Pain Research Center , Aarhus University Hospital , Norrebrogade 44, Building 1A, DK-8000 Aarhus C , Aarhus , Denmark
| |
Collapse
|
5
|
Baastrup C, Maersk-Moller CC, Nyengaard JR, Jensen TS, Finnerup NB. Spinal-, brainstem- and cerebrally mediated responses at- and below-level of a spinal cord contusion in rats: evaluation of pain-like behavior. Pain 2010; 151:670-679. [PMID: 20863621 DOI: 10.1016/j.pain.2010.08.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/13/2010] [Accepted: 08/18/2010] [Indexed: 11/16/2022]
Abstract
Pain is a frequent consequence of spinal cord injury (SCI) which may profoundly impair the patients' quality of life. Valid experimental models and methods are therefore desirable in the search for better treatments. Usually, experimental pain assays depend on stimulus-evoked withdrawal responses; however, this spinal-mediated reflex response may be particularly problematic when evaluating below-level SCI pain due to the development of hyperactive reflex circuitries. In this study, we applied and compared assays measuring cold (acetone), static (von Frey filaments), and dynamic mechanical (soft brush) hypersensitivity at different levels of the neuroaxis at and below the level of injury in a rat model of SCI. We induced an experimental SCI (MASCIS 25 mm weight-drop) and evaluated the development of spinal reflexes (withdrawal), spinal-brainstem-spinal reflexes (licking, guarding, struggling, vocalizing, jumping, and biting) and cerebral-dependent behavior (place escape/avoidance paradigm (PEAP)). We demonstrated increased brainstem reflexes and cerebrally mediated aversive reactions to stimuli applied at the level of SCI, suggesting development of at-level evoked pain behavior. Furthermore, stimulation below-level increased innate reflex responses without increasing brainstem reflexes or aversive behavior in the PEAP, suggesting development of the spasticity syndrome rather than pain-like behavior. While spinal reflex measures are acceptable for studying changes in the spinal reflex pathways and spinal cord, they are not suited as nociceptive behavioral measures. Measuring brainstem organized responses eliminates the bias associated with the spastic syndrome, but pain requires cortical involvement. Methods depending on cortical structures, as the PEAP, are therefore optimal endpoints in animal models of central pain.
Collapse
Affiliation(s)
- Cathrine Baastrup
- Danish Pain Research Center, Aarhus University Hospital, Aarhus, Denmark Stereology & Electron Microscopy Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | |
Collapse
|