1
|
Zuo X, Xiao Y, Yang J, He Y, He Y, Liu K, Chen X, Guo J. Engineering collagen-based biomaterials for cardiovascular medicine. COLLAGEN AND LEATHER 2024; 6:33. [DOI: 10.1186/s42825-024-00174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 08/21/2024] [Indexed: 01/06/2025]
Abstract
AbstractCardiovascular diseases have been the leading cause of global mortality and disability. In addition to traditional drug and surgical treatment, more and more studies investigate tissue engineering therapeutic strategies in cardiovascular medicine. Collagen interweaves in the form of trimeric chains to form the physiological network framework of the extracellular matrix of cardiac and vascular cells, possessing excellent biological properties (such as low immunogenicity and good biocompatibility) and adjustable mechanical properties, which renders it a vital tissue engineering biomaterial for the treatment of cardiovascular diseases. In recent years, promising advances have been made in the application of collagen materials in blood vessel prostheses, injectable cardiac hydrogels, cardiac patches, and hemostatic materials, although their clinical translation still faces some obstacles. Thus, we reviewed these findings and systematically summarizes the application progress as well as problems of clinical translation of collagen biomaterials in the cardiovascular field. The present review contributes to a comprehensive understanding of the application of collagen biomaterials in cardiovascular medicine.
Graphical abstract
Collapse
|
3
|
Kang H, Yan G, Zhang W, Xu J, Guo J, Yang J, Liu X, Sun A, Chen Z, Fan Y, Deng X. Impaired endothelial cell proliferative, migratory, and adhesive abilities are associated with the slow endothelialization of polycaprolactone vascular grafts implanted into a hypercholesterolemia rat model. Acta Biomater 2022; 149:233-247. [PMID: 35811068 DOI: 10.1016/j.actbio.2022.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Abstract
Most small diameter vascular grafts (inner diameter<6 mm) evaluation studies are performed in healthy animals that cannot represent the clinical situation. Herein, an hypercholesterolemia (HC) rat model with thickened intima and elevated expression of pro-inflammatory intercellular adhesion molecular-1 (ICAM-1) in the carotid branch is established. Electrospun polycaprolactone (PCL) vascular grafts (length: 1 cm; inner diameter: 2 mm) are implanted into the HC rat abdominal aortas in an end to end fashion and followed up to 43 days, showing a relative lower patency accompanied by significant neointima hyperplasia, abundant collagen deposition, and slower endothelialization than those implanted into healthy ones. Moreover, the proliferation, migration, and adhesion behavior of endothelial cells (ECs) isolated from the HC aortas are impaired as evaluated under both static and pulsatile flow conditions. DNA microarray studies of the HC aortic endothelium suggest genes involved in EC proliferation (Egr2), apoptosis (Zbtb16 and Mt1), and metabolism (Slc7a11 and Hamp) are down regulated. These results suggest the impaired proliferative, migratory, and adhesive abilities of ECs are associated with the bad performances of grafts in HC rat. Future pre-clinical evaluation of small diameter vascular grafts may concern more disease animal models with clinical complications. STATEMENT OF SIGNIFICANCE: During the development of small diameter vascular grafts (D<6 mm), young and healthy animal models from pigs, sheep, dogs, to rabbits and rats are preferred. However, it cannot represent the clinic situation, where most cardiovascular grafting procedures are performed in the elderly and age is the primary risk factor for disease development or death. Herein, the performance of electrospun polycaprolactone (PCL) vascular grafts implanted into hypercholesterolemia (HC) or healthy rats were evaluated. Results suggest the proliferative, migratory, and adhesive abilities of endothelial cells (ECs) are already impaired in HC rats, which contributes to the observed slower endothelialization of implanted PCL grafts. Future pre-clinical evaluation of small diameter vascular grafts may concern more disease animal models with clinical complications.
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Guiqin Yan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weichen Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Junwei Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jiaxin Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jiali Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
5
|
Uiterwijk M, van der Valk DC, van Vliet R, de Brouwer IJ, Hooijmans CR, Kluin J. Pulmonary valve tissue engineering strategies in large animal models. PLoS One 2021; 16:e0258046. [PMID: 34610023 PMCID: PMC8491907 DOI: 10.1371/journal.pone.0258046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/16/2021] [Indexed: 01/10/2023] Open
Abstract
In the last 25 years, numerous tissue engineered heart valve (TEHV) strategies have been studied in large animal models. To evaluate, qualify and summarize all available publications, we conducted a systematic review and meta-analysis. We identified 80 reports that studied TEHVs of synthetic or natural scaffolds in pulmonary position (n = 693 animals). We identified substantial heterogeneity in study designs, methods and outcomes. Most importantly, the quality assessment showed poor reporting in randomization and blinding strategies. Meta-analysis showed no differences in mortality and rate of valve regurgitation between different scaffolds or strategies. However, it revealed a higher transvalvular pressure gradient in synthetic scaffolds (11.6 mmHg; 95% CI, [7.31-15.89]) compared to natural scaffolds (4,67 mmHg; 95% CI, [3,94-5.39]; p = 0.003). These results should be interpreted with caution due to lack of a standardized control group, substantial study heterogeneity, and relatively low number of comparable studies in subgroup analyses. Based on this review, the most adequate scaffold model is still undefined. This review endorses that, to move the TEHV field forward and enable reliable comparisons, it is essential to define standardized methods and ways of reporting. This would greatly enhance the value of individual large animal studies.
Collapse
Affiliation(s)
- M. Uiterwijk
- Heart Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - D. C. van der Valk
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - R. van Vliet
- Faculty of medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - I. J. de Brouwer
- Faculty of medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - C. R. Hooijmans
- Department for Health Evidence Unit SYRCLE, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Anesthesiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J. Kluin
- Heart Center, Amsterdam University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
Regenerative and durable small-diameter graft as an arterial conduit. Proc Natl Acad Sci U S A 2019; 116:12710-12719. [PMID: 31182572 DOI: 10.1073/pnas.1905966116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Despite significant research efforts, clinical practice for arterial bypass surgery has been stagnant, and engineered grafts continue to face postimplantation challenges. Here, we describe the development and application of a durable small-diameter vascular graft with tailored regenerative capacity. We fabricated small-diameter vascular grafts by electrospinning fibrin tubes and poly(ε-caprolactone) fibrous sheaths, which improved suture retention strength and enabled long-term survival. Using surface topography in a hollow fibrin microfiber tube, we enable immediate, controlled perfusion and formation of a confluent endothelium within 3-4 days in vitro with human endothelial colony-forming cells, but a stable endothelium is noticeable at 4 weeks in vivo. Implantation of acellular or endothelialized fibrin grafts with an external ultrathin poly(ε-caprolactone) sheath as an interposition graft in the abdominal aorta of a severe combined immunodeficient Beige mouse model supports normal blood flow and vessel patency for 24 weeks. Mechanical properties of the implanted grafts closely approximate the native abdominal aorta properties after just 1 week in vivo. Fibrin mediated cellular remodeling, stable tunica intima and media formation, and abundant matrix deposition with organized collagen layers and wavy elastin lamellae. Endothelialized grafts evidenced controlled healthy remodeling with delayed and reduced macrophage infiltration alongside neo vasa vasorum-like structure formation, reduced calcification, and accelerated tunica media formation. Our studies establish a small-diameter graft that is fabricated in less than 1 week, mediates neotissue formation and incorporation into the native tissue, and matches the native vessel size and mechanical properties, overcoming main challenges in arterial bypass surgery.
Collapse
|