1
|
Sun L, Xi S, He G, Li Z, Gang X, Sun C, Guo W, Wang G. Two to Tango: Dialogue between Adaptive and Innate Immunity in Type 1 Diabetes. J Diabetes Res 2020; 2020:4106518. [PMID: 32802890 PMCID: PMC7415089 DOI: 10.1155/2020/4106518] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a long-term and chronic autoimmune disorder, in which the immune system attacks the pancreatic β-cells. Both adaptive and innate immune systems are involved in T1DM development. Both B-cells and T-cells, including CD4 + and CD8 + T-cells, as well as other T-cell subsets, could affect onset of autoimmunity. Furthermore, cells involved in innate immunity, including the macrophages, dendritic cells, and natural killer (NK) cells, could also accelerate or decelerate T1DM development. In this review, the crosstalk and function of immune cells in the pathogenesis of T1DM, as well as the corresponding therapeutic interventions, are discussed.
Collapse
Affiliation(s)
- Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Shugang Xi
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Guangyu He
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Zhuo Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Chenglin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| |
Collapse
|
2
|
Thondawada M, Wadhwani AD, S. Palanisamy D, Rathore HS, Gupta RC, Chintamaneni PK, Samanta MK, Dubala A, Varma S, Krishnamurthy PT, Gowthamarajan K. An effective treatment approach of DPP-IV inhibitor encapsulated polymeric nanoparticles conjugated with anti-CD-4 mAb for type 1 diabetes. Drug Dev Ind Pharm 2018; 44:1120-1129. [DOI: 10.1080/03639045.2018.1438460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mahesh Thondawada
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy (Off campus, Jagadguru Sri Shivarathreeswara University, Mysuru), Ootacamund, India
| | - Ashish Devidas Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy (Off campus, Jagadguru Sri Shivarathreeswara University, Mysuru), Ootacamund, India
| | - Dhanabal S. Palanisamy
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy (Off campus, Jagadguru Sri Shivarathreeswara University, Mysuru), Ootacamund, India
| | | | - Ramesh C. Gupta
- Department of Biotechnology, Nagaland University, Dimapur, India
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy (Off campus, Jagadguru Sri Shivarathreeswara University, Mysuru), Ootacamund, India
| | - Malay K. Samanta
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy (Off campus, Jagadguru Sri Shivarathreeswara University, Mysuru), Ootacamund, India
| | - Anil Dubala
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy (Off campus, Jagadguru Sri Shivarathreeswara University, Mysuru), Ootacamund, India
| | - Sameer Varma
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy (Off campus, Jagadguru Sri Shivarathreeswara University, Mysuru), Ootacamund, India
| | - Praveen T. Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (Off campus, Jagadguru Sri Shivarathreeswara University, Mysuru), Ootacamund, India
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy (Off campus, Jagadguru Sri Shivarathreeswara University, Mysuru), Ootacamund, India
| |
Collapse
|
3
|
Combination of monoclonal antibodies and DPP-IV inhibitors in the treatment of type 1 diabetes: a plausible treatment modality? Med Hypotheses 2014; 83:1-5. [PMID: 24810674 DOI: 10.1016/j.mehy.2014.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/12/2014] [Accepted: 04/14/2014] [Indexed: 01/10/2023]
Abstract
Regulatory T cells (Tregs) are crucial for the maintenance of immunological tolerance. Type 1 diabetes (T1D) occurs when the immune-regulatory mechanism fails. In fact, T1D is reversed by islet transplantation but is associated with hostile effects of persistent immune suppression. T1D is believed to be dependent on the activation of type-1 helper T (Th1) cells. Immune tolerance is liable for the activation of the Th1 cells. The important role of Th1 cells in pathology of T1D entails the depletion of CD4(+) T cells, which initiated the use of monoclonal antibodies (mAbs) against CD4(+) T cells to interfere with induction of T1D. Prevention of autoimmunity is not only a step forward for the treatment of T1D, but could also restore the β-cell mass. Glucagon-like peptide (GLP)-1 stimulates β-cell proliferation and also has anti-apoptotic effects on them. However, the potential use of GLP-1 as a possible method to restore pancreatic β-cells is limited due to rapid degradation by dipeptidyl peptidase (DPP)-IV. We hypothesize that treatment with combination of CD4 mAbs and DPP-IV inhibitors could prevent/reverse T1D. CD4 mAbs have the ability to induce immune tolerance, thereby arresting further progression of T1D; DPP-IV inhibitors have the capability to regenerate the β-cell mass. Consequently, the combination of CD4 mAbs and DPP-IV inhibitor could avoid or at least minimize the constraints of intensive subcutaneous insulin therapy. We presume that if this hypothesis proves correct, it may become one of the plausible therapeutic options for T1D.
Collapse
|