1
|
Sundberg M, Bergquist J, Ramström M. High-abundant protein depletion strategies applied on dog cerebrospinal fluid and evaluated by high-resolution mass spectrometry. Biochem Biophys Rep 2015; 3:68-75. [PMID: 30338299 PMCID: PMC6189695 DOI: 10.1016/j.bbrep.2015.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/27/2022] Open
Abstract
As the number of fully sequenced animal genomes and the performance of advanced mass spectrometry-based proteomics techniques are continuously improving, there is now a great opportunity to increase the knowledge of various animal proteomes. This research area is further stimulated by a growing interest from veterinary medicine and the pharmaceutical industry. Cerebrospinal fluid (CSF) is a good source for better understanding of diseases related to the central nervous system, both in humans and other animals. In this study, four high-abundant protein depletion columns, developed for human or rat serum, were evaluated for dog CSF. For the analysis, a shotgun proteomics approach, based on nanoLC-LTQ Orbitrap MS/MS, was applied. All the selected approaches were shown to deplete dog CSF with different success. It was demonstrated that the columns significantly improved the coverage of the detected dog CSF proteome. An antibody-based column showed the best performance, in terms of efficiency, repeatability and the number of proteins detected in the sample. In total 983 proteins were detected. Of those, 801 proteins were stated as uncharacterized in the UniProt database. To the best of our knowledge, this is the so far largest number of proteins reported for dog CSF in one single study. We evaluated four high-abundant protein depletion kits on dog CSF. High abundant depletion kit developed for humans/rats can be used for dog CSF. Protein depletion of dog CSF gives extended coverage of the CSF proteome. In total, 983 dog proteins were identified in this study.
Collapse
Affiliation(s)
- Mårten Sundberg
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| | - Margareta Ramström
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| |
Collapse
|
2
|
Hyung SW, Piehowski PD, Moore RJ, Orton DJ, Schepmoes AA, Clauss TR, Chu RK, Fillmore TL, Brewer H, Liu T, Zhao R, Smith RD. Microscale depletion of high abundance proteins in human biofluids using IgY14 immunoaffinity resin: analysis of human plasma and cerebrospinal fluid. Anal Bioanal Chem 2014; 406:7117-25. [PMID: 25192788 DOI: 10.1007/s00216-014-8058-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/09/2014] [Accepted: 07/22/2014] [Indexed: 12/30/2022]
Abstract
Removal of highly abundant proteins in plasma is often carried out using immunoaffinity depletion to extend the dynamic range of measurements to lower abundance species. While commercial depletion columns are available for this purpose, they generally are not applicable to limited sample quantities (<20 μL) due to low yields stemming from losses caused by nonspecific binding to the column matrix and concentration of large eluent volumes. Additionally, the cost of the depletion media can be prohibitive for larger-scale studies. Modern LC-MS instrumentation provides the sensitivity necessary to scale-down depletion methods with minimal sacrifice to proteome coverage, which makes smaller volume depletion columns desirable for maximizing sample recovery when samples are limited, as well as for reducing the expense of large-scale studies. We characterized the performance of a 346 μL column volume microscale depletion system, using four different flow rates to determine the most effective depletion conditions for ∼6-μL injections of human plasma proteins and then evaluated depletion reproducibility at the optimum flow rate condition. Depletion of plasma using a commercial 10-mL depletion column served as the control. Results showed depletion efficiency of the microscale column increased as flow rate decreased, and that our microdepletion was reproducible. In an initial application, a 600-μL sample of human cerebrospinal fluid (CSF) pooled from multiple sclerosis patients was depleted and then analyzed using reversed phase liquid chromatography-mass spectrometry to demonstrate the utility of the system for this important biofluid where sample quantities are more commonly limited.
Collapse
Affiliation(s)
- Seok-Won Hyung
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Shi T, Zhou JY, Gritsenko MA, Hossain M, Camp DG, Smith RD, Qian WJ. IgY14 and SuperMix immunoaffinity separations coupled with liquid chromatography-mass spectrometry for human plasma proteomics biomarker discovery. Methods 2011; 56:246-53. [PMID: 21925605 DOI: 10.1016/j.ymeth.2011.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022] Open
Abstract
Interest in the application of advanced proteomics technologies to human blood plasma- or serum-based clinical samples for the purpose of discovering disease biomarkers continues to grow; however, the enormous dynamic range of protein concentrations in these types of samples (often >10 orders of magnitude) represents a significant analytical challenge, particularly for detecting low-abundance candidate biomarkers. In response, immunoaffinity separation methods for depleting multiple high- and moderate-abundance proteins have become key tools for enriching low-abundance proteins and enhancing detection of these proteins in plasma proteomics. Herein, we describe IgY14 and tandem IgY14-Supermix separation methods for removing 14 high-abundance and up to 60 moderate-abundance proteins, respectively, from human blood plasma and highlight their utility when combined with liquid chromatography-tandem mass spectrometry for interrogating the human plasma proteome.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Ly L, Wasinger VC. Protein and peptide fractionation, enrichment and depletion: Tools for the complex proteome. Proteomics 2011; 11:513-34. [DOI: 10.1002/pmic.201000394] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/03/2010] [Accepted: 10/18/2010] [Indexed: 12/28/2022]
|
5
|
Immunodepletion of high abundance proteins coupled on-line with reversed-phase liquid chromatography: A two-dimensional LC sample enrichment and fractionation technique for mammalian proteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:79-85. [DOI: 10.1016/j.jchromb.2008.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/10/2008] [Accepted: 11/12/2008] [Indexed: 01/06/2023]
|
6
|
Fang X, Zhang WW. Affinity separation and enrichment methods in proteomic analysis. J Proteomics 2008; 71:284-303. [PMID: 18619565 DOI: 10.1016/j.jprot.2008.06.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 06/24/2008] [Accepted: 06/24/2008] [Indexed: 12/24/2022]
Abstract
Protein separation or enrichment is one of the rate-limiting steps in proteomic studies. Specific capture and removal of highly-abundant proteins (HAP) with large sample-handling capacities are in great demand for enabling detection and analysis of low-abundant proteins (LAP). How to grasp and enrich these specific proteins or LAP in complex protein mixtures is also an outstanding challenge for biomarker discovery and validation. In response to these needs, various approaches for removal of HAP or capture of LAP in biological fluids, particularly in plasma or serum, have been developed. Among them, immunoaffinity subtraction methods based upon polyclonal IgY or IgG antibodies have shown to possess unique advantages for proteomic analysis of plasma, serum and other biological samples. In addition, other affinity methods that use recombinant proteins, lectins, peptides, or chemical ligands have also been developed and applied to LAP capture or enrichment. This review discusses in detail the need to put technologies and methods in affinity subtraction or enrichment into a context of proteomic and systems biology as "Separomics" and provides a prospective of affinity-mediated proteomics. Specific products, along with their features, advantages, and disadvantages will also be discussed.
Collapse
|
7
|
Abstract
Separation of complex mixtures having a wide dynamic range of protein concentration, such as plasma or serum, presents a significant challenge for proteomic analysis. Immunoaffinity fractionation is one of the most effective methods used during sample preparation to improve the ability to detect low-abundant proteins (LAP), enhancing biomarker discovery. Avian IgY (Immunoglobulin Yolk) antibodies have unique and advantageous features, which include strong avidity, high specificity, low nonspecific binding, and accumulative production. Polyclonal IgY antibodies covalently coupled to microbeads are particularly effective in specifically removing high-abundant proteins (HAP) from plasma, serum, CSF, urine, and other body fluid or cellular sources. IgY-12 is a composition of IgY microbeads designed for one-step removal of the 12 most abundant proteins in human serum or plasma: albumin, IgG, transferrin, fibrinogen, alpha1-antitrypsin, IgA, IgM, alpha2-macroglobulin, haptoglobin, apolipoproteins A-I and A-II, and orosomucoid (alpha1-acid glycoprotein). Removal of the 12 HAPs enables improved resolution and dynamic range for one-dimensional gel electrophoresis (1DGE), two-dimensional gel electrophoresis (2DGE), and liquid chromatography/mass spectrometry (LC/MS).
Collapse
Affiliation(s)
- Lei Huang
- GenWay Biotech Inc., San Diego, California, USA
| | | |
Collapse
|
8
|
Cellar NA, Kuppannan K, Langhorst ML, Ni W, Xu P, Young SA. Cross species applicability of abundant protein depletion columns for ribulose-1,5-bisphosphate carboxylase/oxygenase. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 861:29-39. [PMID: 18063427 DOI: 10.1016/j.jchromb.2007.11.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/08/2007] [Accepted: 11/16/2007] [Indexed: 01/05/2023]
Abstract
In plants, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is an important enzyme in the Calvin cycle, catalyzing the first step of carbon fixation. Because of its critical role in photosynthesis, RuBisCO comprises 30-60% of the total protein content in green leaf tissue and represents a major protein which can interfere with determination of lower abundance proteins in plant proteomics. A potential solution to aid in the determination of low level proteins in plant proteomics are RuBisCO immunodepletion columns. Two formats, spin and LC, of Seppro IgY RuBisCO depletion columns were evaluated for cross species applicability. The spin and LC columns were found to deplete arabidopsis RuBisCO by greater than 90 and 98%, respectively, and automation could be achieved with the LC format. Canola RuBisCO was depleted to a similar extent, and there was evidence suggesting that corn and tobacco RuBisCO were also highly depleted in flow through fractions. Model proteins were spiked into samples to provide insight into the degree of non-specific binding. Finally, improved detection and identification of lower abundance proteins was demonstrated after depletion.
Collapse
Affiliation(s)
- Nicholas A Cellar
- The Dow Chemical Company, Analytical Sciences, Building 1897, Midland, MI 48667, United States.
| | | | | | | | | | | |
Collapse
|
9
|
Fernandez ML, Broadbent JA, Shooter GK, Malda J, Upton Z. Development of an enhanced proteomic method to detect prognostic and diagnostic markers of healing in chronic wound fluid. Br J Dermatol 2007; 158:281-90. [PMID: 18070206 DOI: 10.1111/j.1365-2133.2007.08362.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chronic venous leg ulcers are a significant cause of pain, immobility and decreased quality of life for patients with these wounds. In view of this, research efforts are focused on multiple factors in the wound environment to obtain information regarding the healing of ulcers. OBJECTIVES Chronic wound fluid (CWF), containing a complex mixture of proteins, is an important modulator of the wound environment, and therefore we hypothesized that these proteins may be indicators of the status of wounds and their potential to heal or otherwise. To explore this we developed and validated a proteomic approach to analyse CWF. METHODS In this study, pooled CWF was depleted of high abundant proteins using immunoaffinity chromatography. The flow-through and bound fractions were collected, concentrated, desalted and analysed using a range of techniques. Each fraction was further separated using two-dimensional (2D) gel electrophoresis and 2D liquid chromatography and analysed using mass spectrometry (MS). RESULTS Western blot analysis against three high abundant proteins confirmed the selective removal of these proteins from CWF. Critically, one-dimensional and 2D gel electrophoresis indicated that subsequent removal of these proteins enhanced the ability to detect proteins in low abundance in CWF. Further, MS demonstrated that depletion of these abundant proteins increased the detection of other proteins in these samples. CONCLUSIONS Results obtained indicate that this approach significantly improves separation of proteins present in low concentrations in CWF. This will facilitate the identification of biomarkers in samples collected from patients with ulcers and lead to improved patient therapies and wound care approaches.
Collapse
Affiliation(s)
- M L Fernandez
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia.
| | | | | | | | | |
Collapse
|
10
|
Huang L, Harvie G, Feitelson JS, Gramatikoff K, Herold DA, Allen DL, Amunngama R, Hagler RA, Pisano MR, Zhang WW, Fang X. Immunoaffinity separation of plasma proteins by IgY microbeads: meeting the needs of proteomic sample preparation and analysis. Proteomics 2005; 5:3314-28. [PMID: 16041669 DOI: 10.1002/pmic.200401277] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Separation of complex protein mixtures that have a wide dynamic range of concentration, such as plasma or serum, is a challenge for proteomic analysis. Sample preparation to remove high-abundant proteins is essential for proteomics analysis. Immunoglobulin yolk (IgY) antibodies have unique and advantageous features that enable specific protein removal to aid in the detection of low-abundant proteins and biomarker discovery. This report describes the efficiency and effectiveness of IgY microbeads in separating 12 abundant proteins from plasma with an immunoaffinity spin column or LC column. The protein separation and sample preparation process was monitored via SDS-PAGE, 2-DE, LC-MS/MS, or clinical protein assays. The data demonstrate the high specificity of the protein separation, with removal of 95-99.5% of the abundant proteins. IgY microbeads against human proteins can also selectively remove orthologous proteins of other mammals such as mouse, rat, etc. Besides the specificity and reproducibility of the IgY microbeads, the report discusses the factors that may cause potential variations in protein separation such as protein-protein interactions (known as "Interactome"), binding and washing conditions of immunoaffinity reagents, etc. A novel concept of Seppromics is introduced to address methodologies and science of protein separation in a context of proteomics.
Collapse
Affiliation(s)
- Lei Huang
- GenWay Biotech, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Wei-Wei Zhang
- GenWay Biotech, Inc., 10130 Sorrento Valley Road, Suite C, San Diego, CA 92121, USA.
| |
Collapse
|
12
|
Gramatikoff K, Fang X, Zhang WW. Affymex: a bioinformatics online tool for optimizing abundant protein depletion and mass spectrometry analysis. Biotechniques 2005; Suppl:30-1. [PMID: 16528914 DOI: 10.2144/05386su05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|