1
|
Li X, Liang S, Li J, Tang W, Yu M, Ahmed MH, Liang S, Zhang F, Inokoshi M, Yao C, Huang C. Influence of surface treatments on highly translucent zirconia: Mechanical, optical properties and bonding performance. J Dent 2025; 154:105580. [PMID: 39828022 DOI: 10.1016/j.jdent.2025.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVES Highly translucent yttria-stabilized zirconia (YSZ) has become more popular due to its enhanced aesthetics. This study aimed to evaluate the influence of traditional air abrasion and a new etching and cleaning agent, Multi Etchant, on the mechanical performance, optical properties, and bond strength of highly translucent zirconia. METHODS Specimens of 6YSZ, 5YSZ, 4YSZ&5YSZ, and conventional 3YSZ were fabricated and underwent different surface treatments, including as milled, air abrasion, and Multi Etchant. The chemical, phase, and microstructural characterization of zirconia were analyzed by X-ray fluorescence, X-ray diffraction, scanning electron microscope, and optical profilometer. Furthermore, flexural strength, optical properties, and bond strength of zirconia with resin composite cement before and after three-month water storage were measured. RESULTS Highly translucent zirconia contained more c-ZrO2 and larger grain sizes (up to 1.85 μm), resulting in higher translucency but lower flexural strength compared to 3YSZ. Air abrasion substantially increased the flexural strength of 3YSZ and improved the bond strength of all zirconia types, with bond strength remaining stable after artificial aging. Multi Etchant did not significantly alter the mechanical or optical properties but enhanced the bond strength of UTML (6YSZ), TT-MT-ML (5YSZ), EZneer (5YSZ), and CER (3YSZ), particularly after water storage. CONCLUSIONS Yttria content variations between highly translucent and conventional zirconia affected mechanical and optical properties but not bond performance. The bonding strategy of air abrasion pretreatment can be effectively extended to highly translucent zirconia. Using an etchant containing adhesive monomer shows clinical potential, as it enhances long-term bond strength without compromising zirconia's durability. CLINICAL SIGNIFICANCE The air abrasion parameter of 0.2 MPa for 10 s can be extended from 3YSZ to highly translucent zirconia without impairing its properties. Air abrasion improves the bond strength of highly translucent zirconia.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Shengjie Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Jing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Wenhui Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Miaoyang Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Mohammed H Ahmed
- Department of Dental Biomaterials, Faculty of Dentistry, Tanta University, Tanta 31511, Egypt
| | - Shanshan Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Fei Zhang
- KU Leuven, Department of Oral Health Sciences, Biomaterials - BIOMAT, Leuven 3000, Belgium; KU Leuven, Department of Materials Engineering, Surface and Interface Engineered Materials (SIEM), Leuven, Belgium
| | - Masanao Inokoshi
- Department of Oral Devices and Materials, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Chenmin Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
2
|
Li X, Liang S, Inokoshi M, Zhao S, Hong G, Yao C, Huang C. Different surface treatments and adhesive monomers for zirconia-resin bonds: A systematic review and network meta-analysis. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:175-189. [PMID: 38938474 PMCID: PMC11208804 DOI: 10.1016/j.jdsr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 06/29/2024] Open
Abstract
This review examined the efficacy of surface treatments and adhesive monomers for enhancing zirconia-resin bond strength. A comprehensive literature search in PubMed, Embase, Web of Science, Scopus, and the Cochrane Library yielded relevant in vitro studies. Employing pairwise and Bayesian network meta-analyses, 77 articles meeting inclusion criteria were analyzed. Gas plasma was found to be ineffective, while treatments including air abrasion, silica coating, laser, selective infiltration etching, hot etching showed varied effectiveness. Air abrasion with finer particles (25-53 µm) showed higher immediate bond strength than larger particles (110-150 µm), with no significant difference post-aging. The Rocatec silica coating system outperformed the CoJet system in both immediate and long-term bond strength. Adhesives containing 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) were superior to other acidic monomers. The application of 2-hydroxyethyl methacrylate and silane did not improve bonding performance. Notably, 91.2 % of bonds weakened after aging, but this effect was less pronounced with air abrasion or silica coating. The findings highlight the effectiveness of air abrasion, silica coating, selective infiltration etching, hot etching, and laser treatment in improving bond strength, with 10-MDP in bonding agents enhancing zirconia bonding efficacy.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shengjie Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Masanao Inokoshi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1–5-45 Yushima, Bunkyo-ku, Tokyo 113–8549, Japan
| | - Shikai Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guang Hong
- Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Chenmin Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
3
|
Nonaka K, Teramae M, Pezzotti G. Effect of rapid cooling on residual stress and surface fracture toughness of dental zirconia. J Mech Behav Biomed Mater 2024; 157:106656. [PMID: 39033559 DOI: 10.1016/j.jmbbm.2024.106656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
Short-time sintering of dental zirconia not only improves manufacturing efficiency of zirconia prosthetics, but also enables an attractive situation in which prosthetic treatment can be completed within a single visit. Although many studies have clarified the effects of heating rate and dwell time on the properties of dental zirconia during short-time sintering, there are only a few studies on rapid cooling. In this study, we investigated the effect of cooling rate on dental zirconia. It was found that the cooling rate had no effect on the three-point flexural strength, but a fast cooling rate improved fracture toughness at the material surface. Raman piezo-spectroscopy showed that a compressive stress layer formed in the neighborhood of the zirconia surface and that its thickness increased with increasing cooling rate. From the above results, it was concluded that the compressive stress layer formed on the surface by rapid cooling improved the apparent fracture toughness at the material surface.
Collapse
Affiliation(s)
- Kazumichi Nonaka
- Department of Research and Development, SHOFU INC., Higashiyama-ku, Kyoto, Japan.
| | - Mitsuji Teramae
- Department of Research and Development, SHOFU INC., Higashiyama-ku, Kyoto, Japan
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan; Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, 573-1010, Japan
| |
Collapse
|
4
|
Al-Johani H, Haider J, Silikas N, Satterthwaite J. Effect of repeated firing on the topographical, optical, and mechanical properties of fully crystallized lithium silicate-based ceramics. J Prosthet Dent 2024; 131:741.e1-741.e11. [PMID: 38242762 DOI: 10.1016/j.prosdent.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
STATEMENT OF PROBLEM The influence of different firing protocols on the topographical, optical, and mechanical properties of fully crystallized computer-aided design and computer-aided manufacturing (CAD-CAM) lithium silicate-based glass-ceramics (LSCs) for dental restorations remains unclear. PURPOSE The purpose of this in vitro study was to investigate the effect of different firing regimens on the surface roughness, gloss, Martens hardness, indentation modulus, biaxial flexural strength, and crystalline structure of fully crystallized CAD-CAM LSCs and the effect of their interposition on the irradiance of a light-polymerization unit. MATERIAL AND METHODS Three fully crystallized CAD-CAM LSC blocks were evaluated (N=150): lithium disilicate (Initial LiSi Blocks; LS), zirconia-reinforced silicate (Celtra Duo; CD), and lithium aluminum disilicate (CEREC Tessera; CT). Specimens were allocated to 5 subgroups according to their firing protocol. LSC roughness (Sa) was measured with an optical profilometer, and gloss (GU) was detected with a gloss meter. Martens hardness (HM) and indentation modulus (EIT) data were obtained from a hardness testing machine. The irradiance of a light-polymerization unit and transmittance of LSCs were measured with an instrument (Managing Accurate Resin Curing-Light Collector; BlueLight analytics, Inc) subsequent to ceramic interposition. Crystalline phases were analyzed by X-ray diffraction, and biaxial flexural strength (σ) was determined by the ball-on-3-ball method in a universal testing machine followed by Weibull analysis to calculate characteristic strength (σ0) and Weibull modulus (m). Two-way ANOVA and Tukey HSD post hoc tests (α=.05) were used to analyze the data. RESULTS Statistically significant differences were found among different treatment groups based on Sa, GU, HM, and EIT values (P<.001). Delivered irradiance was significantly reduced following CT (P<.01) and glazed LSC (P<.005) interposition. CD displayed highest biaxial flexural strength and reliability after 1 firing cycle (σ=568.2 MPa, m=16.8) CONCLUSIONS: The type of material and firing regimens had a significant effect on the topographical, optical, and mechanical properties of fully crystallized CAD-CAM LSCs. Glazing significantly reduced delivered irradiance, Martens hardness, and biaxial flexural strength.
Collapse
Affiliation(s)
- Hanan Al-Johani
- PhD student, Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, England, UK
| | - Julfikar Haider
- Associate Professor, Department of Engineering, Manchester Metropolitan University, Manchester, England, UK
| | - Nick Silikas
- Full Professor, Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, England, UK.
| | - Julian Satterthwaite
- Full Professor, Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, England, UK
| |
Collapse
|
5
|
Onuma H, Inokoshi M, Xu K, Minakuchi S. Fracture strength of porcelain veneer on surface-treated zirconia. Dent Mater J 2024; 43:263-268. [PMID: 38382941 DOI: 10.4012/dmj.2023-139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In this study, we investigated the effects of surface treatment on the fracture strength of porcelain-veneered zirconia. Highly translucent 4 mol% yttria-stabilized zirconia disks (KATANA HT, Kuraray Noritake Dental) were divided into three surface-treatment groups: 1)as-sintered, 2) alumina sandblasted, and 3) ground. Crystallographic and surface-roughness analyses were conducted for each group. Veneering ceramics (Cerabien ZR, Kuraray Noritake Dental) were applied to the zirconia surfaces. The fracture strengths of the porcelain-veneered zirconia disks were measured using biaxial flexural-strength tests. Crystallographic analysis revealed that grinding and sandblasting increased the fractions of the monoclinic and rhombohedral zirconia phases. The ground specimens had a higher surface roughness than the sandblasted specimens. Weibull analysis showed no significant differences in biaxial flexural strength among the three groups. The results suggest that these surface treatments do not affect the fracture strength of porcelain-veneered zirconia.
Collapse
Affiliation(s)
- Hiraku Onuma
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
- Department of Prosthodontics, Texas A&M University College of Dentistry
| | - Masanao Inokoshi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Kaiqi Xu
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Shunsuke Minakuchi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
6
|
Kim HY, Cho JH, Yoon HI, Lee JH, Choi S, Han JS, Yeo ISL. Topographical and crystalline change on surface by sandblasting improve flexural and shear bond strength of niobia-modified yttria-stabilized tetragonal zirconia polycrystal. Dent Mater J 2024; 43:216-226. [PMID: 38417860 DOI: 10.4012/dmj.2023-225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
This study aimed to investigate the effects of sandblasting on the physical properties and bond strength of two types of translucent zirconia: niobium-oxide-containing yttria-stabilized tetragonal zirconia polycrystals ((Y, Nb)-TZP) and 5 mol% yttria-partially stabilized zirconia (5Y-PSZ). Fully sintered disc specimens were either sandblasted with 125 µm alumina particles or left as-sintered. Surface roughness, crystal phase compositions, and surface morphology were explored. Biaxial flexural strength (n=10) and shear bond strength (SBS) (n=12) were evaluated, including thermocycling conditions. Results indicated a decrease in flexural strength of 5Y-PSZ from 601 to 303 MPa upon sandblasting, while (Y, Nb)-TZP improved from 458 to 544 MPa. Both materials significantly increased SBS after sandblasting (p<0.001). After thermocycling, (Y, Nb)-TZP maintained superior SBS (14.3 MPa) compared to 5Y-PSZ (11.3 MPa) (p<0.001). The study concludes that (Y, Nb)-TZP is preferable for sandblasting applications, particularly for achieving durable bonding without compromising flexural strength.
Collapse
Affiliation(s)
- Ha-Young Kim
- Department of Prosthodontics, Seoul National University School of Dentistry
| | - Jun-Ho Cho
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University
| | - Hyung-In Yoon
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University
| | - Jae-Hyun Lee
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University
| | - Sunyoung Choi
- Department of Prosthodontics, One-Stop Specialty Center, Seoul National University Dental Hospital
| | - Jung-Suk Han
- Department of Prosthodontics, Seoul National University School of Dentistry
| | - In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University
| |
Collapse
|
7
|
Alao AR. Optimization of surface roughness, phase transformation and shear bond strength in sandblasting process of YTZP using statistical machine learning. J Mech Behav Biomed Mater 2024; 150:106245. [PMID: 37992583 DOI: 10.1016/j.jmbbm.2023.106245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Sandblasting process is often applied to roughen the intaglio of yttria tetragonal zirconia polycrystals (YTZP) surfaces for easy and quality adhesion and micro-shear retention with dentine/resin cements. Sandblasting process parameters have shown to influence, at different scales, surface roughness, phase transformation and shear bond strength, all of which are referred, herein, as performance characteristics. This study aimed to find the parametric settings of sandblasting parameters that could simultaneously optimize these performance characteristics, hypothetically testing the probability. YTZP surfaces were sandblasted at different levels of incidence angle (IA), abrasive particle size (AP), pressure(P) and sandblasting time (ST) following the Taguchi method based on the two-level parametric process settings (L8(27)). Surface morphologies, roughness (SR), monoclinic content (MC), and shear bond strength (SS) were characterized by the SEM, average surface roughness, XRD, and shear bond strength tests, respectively. Rough surfaces containing scratches, plastic deformation streaks, micro cracks and pitting were observed. According to the Taguchi method, the same optimum sandblasting parametric setting maximized SR and MC but failed to maximize SS. Subsequently, the principal component analysis embedded in statistical machine learning was applied to find the optimum sandblasting parametric setting that maximized all the performance characteristics. The optimum sandblasting setting of IA = 45°, AP = 110 μm, ST = 20 s and P = 400 kPa predicted the maximum values of SR = 0.773 μm, MC = 36% and SS = 16.6 MPa. Analysis of variance confirmed AP and P as the most influencing parameters affecting all performance characteristics. Finally, these results provide a systematic and comprehensive route for optimizing sandblasting roughening of YTZP surfaces which can be adopted in adhesive dental and orthodontic industry.
Collapse
Affiliation(s)
- Abdur-Rasheed Alao
- Mechanical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam; Wellness Research Thrust, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam.
| |
Collapse
|
8
|
da Rosa LS, Pilecco RO, Sarkis-Onofre R, Kantorski KZ, Valandro LF, Rocha Pereira GK. Should finishing, polishing or glazing be performed after grinding YSZ ceramics? A systematic review and meta-analysis. J Mech Behav Biomed Mater 2023; 138:105654. [PMID: 36634437 DOI: 10.1016/j.jmbbm.2023.105654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
The present systematic review and meta-analysis aimed to assess the characteristics and consequences of post-processing methods after grinding procedures in YSZ ceramics on its surface roughness and flexural strength. The protocol of this review was made prospectively and is available online in the PROSPERO database (link). Literature searches on PubMed/MEDLINE, EMBASE, Lilacs, Web of Science and Scopus were conducted on December 2022 to select in vitro studies written in English, without publishing-date restrictions, that considered surface characteristics and mechanical properties of YSZ ceramics submitted to grinding and subsequent post-processing surface treatments as an attempt to revert the effect induced by grinding. Two authors independently selected the studies, extracted the data and assessed the risk of bias. Mean differences (Rev-Man 5.1, random effects model, α= 0.05) were obtained by comparing flexural strength and surface roughness values of ground surfaces with at least one post-processing surface treatment (global analysis). Subgroup analyses were performed considering the most prevalent categories of post-processing methods. A total of 33 (out of 4032) studies were eligible and included in the analysis. In the global analysis, ground surfaces showed higher flexural strength than when post-processing methodologies were employed (p< 0.0001). The subgroup analysis showed that only polishing was able to enhance the flexural strength after grinding (p= 0.001); however, when other protocols were used, the ground surface was always superior in terms of flexural strength (p< 0.0001). Post-processing techniques in both the global and sub-group analyses were able to reduce the surface roughness after grinding in YSZ ceramics (p< 0.00001). High heterogeneity was found in all the meta-analyses. Concerning the risk of bias analysis, the included studies had mixed scores for the considered factors. In conclusion, in terms of improving flexural strength and restoring surface roughness after grinding, polishing protocols can be considered the best indication as post-processing treatment after YSZ ceramics adjustments/grinding.
Collapse
Affiliation(s)
- Lucas Saldanha da Rosa
- MSciD and PhD Post-Graduate Program in Oral Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Rafaela Oliveira Pilecco
- MSciD and PhD Post-Graduate Program in Oral Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Rafael Sarkis-Onofre
- Graduate Program in Dentistry, Atitus Educação, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Karla Zanini Kantorski
- MSciD and PhD Post-Graduate Program in Oral Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Luiz Felipe Valandro
- MSciD and PhD Post-Graduate Program in Oral Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Gabriel Kalil Rocha Pereira
- MSciD and PhD Post-Graduate Program in Oral Sciences, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Darkoue YA, Burgess JO, Lawson N, McLaren E, Lemons JE, Morris GP, Givan DA, Fu CC. Effects of Particle Abrasion Media and Pressure on Flexural Strength and Bond Strength of Zirconia. Oper Dent 2023; 48:59-67. [PMID: 36445958 DOI: 10.2341/20-168-l] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To compare the effects of particle abrasion medium and pressure on shear bond strength and biaxial flexural strength of three generations of zirconia (Lava Frame, Lava Plus, and Lava Esthetic) with the goal of optimizing the bond to zirconia. METHODS 280 discs (14 mm diameter; 1 mm thickness) of each zirconia were milled and sintered. Specimens of each material were randomly distributed into 14 groups (n=20); half were tested for shear bond strength and half were tested for biaxial flexural strength. The specimens were particle abraded on one surface by 2 different media (50 μm alumina particles or 50 μm glass beads) for 10 seconds at three different pressures (15, 30, and 45 psi or 0.1, 0.2, 0.3 MPa). Untreated specimens served as positive control. A tube (1.50 mm diameter) filled with dual cured resin cement (Panavia SA) was placed onto the surface and light cured. Specimens were stored in water (37°C for 24 hours) and shear bond strength was measured in a universal testing machine (Instron). Biaxial flexural strength of each specimen was measured according to ISO 6872. Shear bond strength and biaxial flexural strength were compared individually with a 2-way analysis of variance (ANOVA) for factors surface treatment and zirconia composition. RESULTS Significant differences were seen between surface treatments (p<0.01), zirconia composition (p<0.01) and their interaction (p<0.01) for both bond strength and flexural strength. With alumina particle abrasion, higher pressure produced higher bonds for Lava Frame and Lava Plus zirconia while the bond of Lava Esthetic declined with increased pressure. Higher pressure (>0.2 MPa or 30 psi) with alumina decreased biaxial flexural strength with Lava Esthetic zirconia. CONCLUSIONS Particle abrasion with alumina produced a significantly better combination of bond strength while maintaining biaxial strength of three zirconia materials than particle abrasion with glass beads. The bond strength also depended upon the pressure of particle abrasion and the generation of zirconia used.
Collapse
Affiliation(s)
- Y A Darkoue
- *Yasko A Darkoue, BDS, MS, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - J O Burgess
- John O Burgess, DDS, MS, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - N Lawson
- Nathaniel Lawson, DMD, MA, PhD, University of Alabama, School of Dentistry, Birmingham, AL, USA
| | - E McLaren
- Edward McLaren, DDS, MDC, retired professor, University of California, Los Angeles, School of Dentistry, Los Angeles, CA, USA
| | - J E Lemons
- Jack E Lemons, MS, PhD, University of Alabama, School of Dentistry, Birmingham, AL, USA
| | - G P Morris
- Geoffrey P Morris, MS, University of Alabama, School of Dentistry, Birmingham, AL, USA
| | - D A Givan
- Daniel A Givan, DMD, PhD, University of Alabama, School of Dentistry, Birmingham, AL, USA
| | - C-C Fu
- Chin-Chuan Fu, DDS, MS, University of Alabama, School of Dentistry, Birmingham, AL, USA
| |
Collapse
|
10
|
Zhang F, Monzavi M, Li M, Čokić S, Manesh A, Nowzari H, Vleugels J, Van Meerbeek B. Fracture analysis of one/two-piece clinically failed zirconia dental implants. Dent Mater 2022; 38:1633-1647. [PMID: 36064469 DOI: 10.1016/j.dental.2022.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Analyzing factors that may have led to fracture of zirconia implants by macro/micro-fractography. METHODS Six one-piece and ten two-piece full-ceramic zirconia implants from two manufacturers, Z-Systems and CeraRoot, were retrieved after clinical failure. The time-to-failure ranged from 3 to 49 months. Optical and scanning electron microscopy (SEM) were used to analyze the fracture planes at the macro- and microscopic level. Treatment planning, surgical protocol, fracture-origin location and characteristic fracture features were assessed. RESULTS The fracture of all implants seemed to have been primarily due to overload in bending mode, while the fracture-initiation sites varied for the one- and two-piece implants. The fracture of all one-piece implants originated in the constriction region between two threads in the endosseous implant part. For two-piece implants, the abutment neck, internal abutment-implant connections and inner threads were found to be the main fracture-initiation sites. Surface defects at the root area for one-piece implants and damages at the abutment surface for two-piece implants were connected to the fracture origins. Importantly, the clinical failures of implants were often found to result from combined effects related to patient aspects, treatment planning/protocols, a high bending moment at the weakest link, implant-surface conditions and specific implant designs. SIGNIFICANCE This study provided information to be considered for future optimization of treatment planning and the surgical protocol for zirconia implants. Optimization of the surface conditions and the zirconia-starting powder were also suggested.
Collapse
Affiliation(s)
- Fei Zhang
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, B-3001 Leuven, Belgium`; KU Leuven, Department of Oral Health Sciences, BIOMAT - Biomaterials Research Group & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7 block a, B-3000 Leuven, Belgium.
| | - Mona Monzavi
- Periodontics and Ceramic Implantology (private Practice), 1401N Tustin Ave Suite #345, Santa Ana, CA 92705, USA
| | - Maoyin Li
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, B-3001 Leuven, Belgium`
| | - Stevan Čokić
- KU Leuven, Department of Oral Health Sciences, BIOMAT - Biomaterials Research Group & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7 block a, B-3000 Leuven, Belgium
| | - Al Manesh
- Mission Dental Implant Center (private Practice), 26800 Crown Valley Pkwy Ste 425, Mission Viejo, CA 92691, USA
| | - Hessam Nowzari
- Periodontics and Implant Dentistry (private practice), 120 S Spalding Dr #201, Beverlyhills, CA 90210, USA
| | - Jef Vleugels
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, B-3001 Leuven, Belgium`
| | - Bart Van Meerbeek
- KU Leuven, Department of Oral Health Sciences, BIOMAT - Biomaterials Research Group & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7 block a, B-3000 Leuven, Belgium
| |
Collapse
|
11
|
Zhang F, Spies BC, Willems E, Inokoshi M, Wesemann C, Cokic SM, Hache B, Kohal RJ, Altmann B, Vleugels J, Van Meerbeek B, Rabel K. 3D printed zirconia dental implants with integrated directional surface pores combine mechanical strength with favorable osteoblast response. Acta Biomater 2022; 150:427-441. [PMID: 35902036 DOI: 10.1016/j.actbio.2022.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Dental implants need to combine mechanical strength with promoted osseointegration. Currently used subtractive manufacturing techniques require a multi-step process to obtain a rough surface topography that stimulates osseointegration. Advantageously, additive manufacturing (AM) enables direct implant shaping with unique geometries and surface topographies. In this study, zirconia implants with integrated lamellar surface topography were additively manufactured by nano-particle ink-jetting. The ISO-14801 fracture load of as-sintered implants (516±39 N) resisted fatigue in 5-55°C water thermo-cycling (631±134 N). Remarkably, simultaneous mechanical fatigue and hydrothermal aging at 90°C significantly increased the implant strength to 909±280 N due to compressive stress generated at the seamless transition of the 30-40 µm thick, rough and porous surface layer to the dense implant core. This unique surface structure induced an elongated osteoblast morphology with uniform cell orientation and allowed for osteoblast proliferation, long-term attachment and matrix mineralization. In conclusion, the developed AM zirconia implants not only provided high long-term mechanical resistance thanks to the dense core along with compressive stress induced at the transition zone, but also generated a favorable osteoblast response owing to the integrated directional surface pores. STATEMENT OF SIGNIFICANCE: : Zirconia ceramics are becoming the material of choice for metal-free dental implants, however significant efforts are required to obtain a rough/porous surface for enhanced osseointegration, along with the risk of surface delamination and/or microstructure variation. In this study, we addressed the challenge by additively manufacturing implants that seamlessly combine dense core with a porous surface layer. For the first time, a unique surface with a directional lamellar pore morphology was additively obtained. This AM implant also provided strength as strong as conventionally manufactured zirconia implants before and after long-term fatigue. Favorable osteoblast response was proved by in-vitro cell investigation. This work demonstrated the opportunity to AM fabricate novel ceramic implants that can simultaneously meet the mechanical and biological functionality requirements.
Collapse
Affiliation(s)
- Fei Zhang
- KU Leuven (University of Leuven), Department of Materials Engineering, Leuven, Belgium; KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium.
| | - Benedikt C Spies
- University of Freiburg, Faculty of Medicine, Center for Dental Medicine, Department of Prosthetic Dentistry, Freiburg, Germany
| | - Evita Willems
- KU Leuven (University of Leuven), Department of Materials Engineering, Leuven, Belgium; KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Masanao Inokoshi
- Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Department of Gerodontology and Oral Rehabilitation, Tokyo, Japan
| | - Christian Wesemann
- University of Freiburg, Faculty of Medicine, Center for Dental Medicine, Department of Prosthetic Dentistry, Freiburg, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Berlin, Germany
| | - Stevan M Cokic
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Benedikt Hache
- University of Freiburg, Faculty of Medicine, Center for Dental Medicine, Department of Prosthetic Dentistry, Freiburg, Germany; University of Freiburg, Faculty of Medicine, Research Center for Tissue Replacement, Regeneration and Neogenesis, Section of Cell biology-inspired Bone Regeneration, G.E.R.N. Freiburg, Germany
| | - Ralf J Kohal
- University of Freiburg, Faculty of Medicine, Center for Dental Medicine, Department of Prosthetic Dentistry, Freiburg, Germany
| | - Brigitte Altmann
- University of Freiburg, Faculty of Medicine, Center for Dental Medicine, Department of Prosthetic Dentistry, Freiburg, Germany; University of Freiburg, Faculty of Medicine, Research Center for Tissue Replacement, Regeneration and Neogenesis, Section of Cell biology-inspired Bone Regeneration, G.E.R.N. Freiburg, Germany
| | - Jef Vleugels
- KU Leuven (University of Leuven), Department of Materials Engineering, Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Kerstin Rabel
- University of Freiburg, Faculty of Medicine, Center for Dental Medicine, Department of Prosthetic Dentistry, Freiburg, Germany
| |
Collapse
|
12
|
Deng XS, Zhang FL, Liao YL, Bai FH, Li KJ, Zhou YM, Wu SH, Wang CY. Effect of grinding parameters on surface integrity and flexural strength of 3Y-TZP ceramic. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
13
|
Kang SU, Kim CH, Kim HK, Yoon YW, Kim YK, Kim SJ. Effect of the Plasma Gas Type on the Surface Characteristics of 3Y-TZP Ceramic. Int J Mol Sci 2022; 23:3007. [PMID: 35328427 PMCID: PMC8950882 DOI: 10.3390/ijms23063007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Plasma surface treatment can be an attractive strategy for modifying the chemically inert nature of zirconia to improve its clinical performance. This study aimed to clarify the effect of plasma gas compositions on the physicochemical surface modifications of 3 mol% yttria-stabilized zirconia (3Y-TZP). The cold, atmospheric plasma discharges were carried out by using four different plasma gases, which are He/O2, N2/Ar, N2, and Ar from an application distance of 10 mm for 60 s. Static contact angles were measured to define the surface free energy. Changes in elemental composition, surface crystallinity, and surface topography were assessed with X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM), respectively. A significant decrease in water contact angle was observed in all plasma groups with the lowest value of 69° in the N2/Ar group. CLSM and SEM investigations exhibited no morphological changes in all plasma groups. XPS revealed that a reduction in the surface C content along with an increase in O content was pronounced in the case of N2/Ar compared to others, which was responsible for high hydrophilicity of the surface. XRD showed that the changes in crystallite size and microstrain due to oxygen atom displacements were observed in the N2/Ar group. The N2/Ar plasma treatment may contribute to enhancing the bioactivity as well as the bonding performance of 3Y-TZP by controlling the plasma-generated nitrogen functionalities.
Collapse
Affiliation(s)
- Sung-Un Kang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea;
- Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Hee-Kyung Kim
- Department of Prosthodontics, Institute of Oral Health Science, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ye-Won Yoon
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea; (Y.-W.Y.); (Y.-K.K.); (S.-J.K.)
| | - Yu-Kwon Kim
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea; (Y.-W.Y.); (Y.-K.K.); (S.-J.K.)
| | - Seung-Joo Kim
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea; (Y.-W.Y.); (Y.-K.K.); (S.-J.K.)
| |
Collapse
|
14
|
Garófalo SA, Wehner M, Dohrn A, Bilandžić MD, Roos C, Wierichs RJ, Meyer-Lueckel H, Aranha ACC, Esteves-Oliveira M. Increasing dental zirconia micro-retentive aspect through ultra-short pulsed laser microstructuring: study on flexural strength and crystal phase characterization. Clin Oral Investig 2022; 26:939-955. [PMID: 34402980 PMCID: PMC8791917 DOI: 10.1007/s00784-021-04077-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/10/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Although ultra-short pulsed laser (USPL) microstructuring has previously improved zirconia bond-strength, it is yet unclear how different laser-machined surface microstructures and patterns may influence the material's mechanical properties. Therefore, the aim of this study was to assess the flexural strength of zirconia after different USPL settings creating three different geometrical patterns with structures in micrometer scale. METHODS One hundred sixty zirconia bars (3Y-TZP, 21 × 4 × 2.1 mm) were prepared and randomly divided into five groups (n = 32): no surface treatment (negative control-NC); sandblasting with Al2O3 (SB); and three laser groups irradiated with USPL (Nd:YVO4/1064 nm/2-34 J/cm2/12 ps): crossed-lines (LC), random-hatching (LR), and parallel-waves (LW). Bars were subjected to a four-point flexural test (1 mm/min) and crystal phase content changes were identified by X-ray diffraction. Surface roughness and topography were analyzed through 3D-laser-profilometry and SEM. Data were analyzed with parametric tests for roughness and Weibull for flexural strength (α = 5%). RESULTS LR (Mean[95%CI]: 852.0 MPa, [809.2-894.7]) was the only group that did not show a significantly different flexural strength than NC (819.8 MPa, [796.6-842.9]), (p > 0.05). All laser groups exhibited higher Weibull moduli than NC and SB, indicating higher reliability and homogeneity of the strength data. An increase of monoclinic phase peak was only observed for SB. CONCLUSION In conclusion, USPL created predictable, homogeneous, highly reproducible, and accurate surface microstructures on zirconia ceramic. The laser-settings of random-hatching (12 ps pulses) increased 3Y-TZP average surface roughness similarly to SB, while not causing deleterious crystal phase transformation or loss of flexural strength of the material. Furthermore, it has increased the Weibull modulus and consequently material's reliability. CLINICAL SIGNIFICANCE Picosecond laser microstructuring (LR conditions) of 3Y-TZP ceramic does not decrease its flexural strength, while increasing materials realiability and creating highly reproducible and accurate microstructures. These features may be of interest both for improving clinical survival of zirconia restorations as well as enhancing longevity of zirconia implants.
Collapse
Affiliation(s)
| | - Martin Wehner
- Fraunhofer Institute for Laser Technology (ILT), RWTH Aachen University, Aachen, Germany
| | - Andreas Dohrn
- Fraunhofer Institute for Laser Technology (ILT), RWTH Aachen University, Aachen, Germany
| | | | - Christian Roos
- Institute of Mineral Engineering (GHI), RWTH Aachen University, Aachen, Germany
| | - Richard Johannes Wierichs
- Department of Restorative, Preventive and Pediatric Dentistry, Zmk Bern, University of Bern, Bern, Switzerland
| | - Hendrik Meyer-Lueckel
- Department of Restorative, Preventive and Pediatric Dentistry, Zmk Bern, University of Bern, Bern, Switzerland
| | - Ana Cecilia Corrêa Aranha
- Special Laboratory of Lasers (LELO), Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Marcella Esteves-Oliveira
- Department of Restorative, Preventive and Pediatric Dentistry, Zmk Bern, University of Bern, Bern, Switzerland.
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
15
|
Surface and bulk properties of zirconia as a function of composition and aging. J Mech Behav Biomed Mater 2021; 126:104994. [PMID: 34864575 DOI: 10.1016/j.jmbbm.2021.104994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/08/2023]
Abstract
Yttria-stabilized zirconia (Y-SZ) materials with different levels of translucency have been used for indirect dental restorations. Y-SZ composition and microstructure are modified to improve translucency, and it is not clear how these materials respond to aging. This study evaluated the effect of hydrothermal aging (HA) performed in an autoclave on the properties of four dental Y-SZ materials with different compositions. Sintered bar-shaped specimens (14 x 4 x 2 mm) were prepared from four different zirconia-based materials (n = 40): low translucency 3 mol % Y-SZ (3Y-LT; Ceramill ZI, Amann Girrbach); high translucency 4 mol % Y-SZ (4Y-HT; Ceramill Zolid); and two high translucency 5 mol % Y-SZ (5Y-HT - Lava Esthetic, 3M; 5Y-SHT - Ceramill Zolid FX). Fully sintered specimens were exposed to HA for different times (control - 0 h, 5 h, 10 h, or 15 h at 134 °C, 2 bar pressure) and characterized for surface roughness, flexural strength (three-point bending), hardness and elastic modulus (nanoindentation), surface wettability (sessile drop technique) and crystalline content (x-ray diffraction, XRD). Data was analyzed by two-way ANOVA and Tukey HSD (p < 0.05). Zirconia composition significantly affected roughness (p = 0.016). Zirconia*aging interaction affected flexural strength (p = 0.012), surface wettability (p < 0.001), and hardness (p = 0.002). Zirconia composition (p = 0.011) and aging (p = 0.001) affected elastic modulus, while the interaction effect was not significant (p = 0.94). HA affects zirconia-based materials in different degrees. For 3Y-LT and 4Y-HT, surface and bulk properties were affected by aging to a similar extent. However, surface and bulk properties may change during clinical use as a result of prolonged degradation of Y-SZ.
Collapse
|
16
|
Additively Manufactured Zirconia for Dental Applications. MATERIALS 2021; 14:ma14133694. [PMID: 34279264 PMCID: PMC8269801 DOI: 10.3390/ma14133694] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
We aimed to assess the crystallography, microstructure and flexural strength of zirconia-based ceramics made by stereolithography (SLA). Two additively manufactured 3 mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP: LithaCon 3Y 230, Lithoz; 3D Mix zirconia, 3DCeram Sinto) and one alumina-toughened zirconia (ATZ: 3D Mix ATZ, 3DCeram Sinto) were compared to subtractively manufactured 3Y-TZP (control: LAVA Plus, 3M Oral Care). Crystallographic analysis was conducted by X-ray diffraction. Top surfaces and cross-sections of the subsurface microstructure were characterized using scanning electron microscopy (SEM). Biaxial flexural strength was statistically compared using Weibull analysis. The additively and subtractively manufactured zirconia grades revealed a similar phase composition. The residual porosity of the SLA 3Y-TZPs and ATZ was comparable to that of subtractively manufactured 3Y-TZP. Weibull analysis revealed that the additively manufactured LithaCon 3Y 230 (Lithoz) had a significantly lower biaxial flexural strength than 3D Mix ATZ (3D Ceram Sinto). The biaxial flexural strength of the subtractively manufactured LAVA Plus (3M Oral Care) was in between those of the additively manufactured 3Y-TZPs, with the additively manufactured ATZ significantly outperforming the subtractively manufactured 3Y-TZP. Additively manufactured 3Y-TZP showed comparable crystallography, microstructure and flexural strength as the subtractively manufactured zirconia, thus potentially being a good option for dental implants.
Collapse
|
17
|
Fathy SM, Al-Zordk W, E Grawish M, V Swain M. Flexural strength and translucency characterization of aesthetic monolithic zirconia and relevance to clinical indications: A systematic review. Dent Mater 2021; 37:711-730. [PMID: 33581910 DOI: 10.1016/j.dental.2021.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/15/2020] [Accepted: 01/20/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Optimizing monolithic zirconia (ZrO2) aesthetically without affecting the unique mechanical properties remains a major ongoing interest. The purpose of this review is to evaluate the improvement of recent monolithic ZrO2 generations to meet aesthetic optimization qualities. Additionally, for how the extent of the former modifications negatively affected their mechanical properties and the impact on their clinical indications. METHODS The current literature examines in-vitro studies evaluating both monolithic ZrO2 translucency and mechanical properties. The electronic search was done within these databases: Web of Science, ScienceDirect, Scopus, and PubMed within the period between 2009/10/01 and 2019/10/31. Search results that met eligibility criteria were classified into four groups; one for translucency parameter, two for uniaxial flexural strength and one for biaxial strength. RESULTS Articles that remained for comprehensive analysis were fifty-three. They reported a significant impact of composition, microstructure and surface treatment on translucency and flexural strength assessment. Aging was found to be of no concern for zirconia structures with high yttria content. Smooth surface polish was found to significantly enhance strength while coarse grinding and mechanical fatigue was found to do the reverse. SIGNIFICANCE Based on analyzing the previous in-vitro studies the following was found: Although significant improvement has occurred with recent monolithic zirconia types with higher yttria content having higher cubic/tetragonal ratio, they are still inferior to glass-ceramics' unique translucency. With improving zirconia aesthetically, some of mechanical performance was sacrificed. Care must be taken when dealing with thin sections of aesthetic zirconia structures especially when used in high bearing stress areas.
Collapse
Affiliation(s)
- Salma M Fathy
- Dental Biomaterials Department, Faculty of Oral and Dental Medicine, Zagazig University, Zagazig, Egypt.
| | - Walid Al-Zordk
- Fixed Prosthodontics Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Mohammed E Grawish
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Micheal V Swain
- Discipline of Biomaterials, Faculty of Dentistry, University of Sydney, Australia
| |
Collapse
|
18
|
Effect of Al 2O 3 Sandblasting Particle Size on the Surface Topography and Residual Compressive Stresses of Three Different Dental Zirconia Grades. MATERIALS 2021; 14:ma14030610. [PMID: 33525702 PMCID: PMC7866047 DOI: 10.3390/ma14030610] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/25/2023]
Abstract
This study investigated the effect of sandblasting particle size on the surface topography and compressive stresses of conventional zirconia (3 mol% yttria-stabilized tetragonal zirconia polycrystal; 3Y-TZP) and two highly translucent zirconia (4 or 5 mol% partially stabilized zirconia; 4Y-PSZ or 5Y-PSZ). Plate-shaped zirconia specimens (14.0 × 14.0 × 1.0 mm3, n = 60 for each grade) were sandblasted using different Al2O3 sizes (25, 50, 90, 110, and 125 μm) under 0.2 MPa for 10 s/cm2 at a 10 mm distance and a 90° angle. The surface topography was characterized using a 3-D confocal laser microscopy and inspected with a scanning electron microscope. To assess residual stresses, the tetragonal peak shift at 147 cm−1 was traced using micro-Raman spectroscopy. Al2O3 sandblasting altered surface topographies (p < 0.05), although highly translucent zirconia showed more pronounced changes compared to conventional zirconia. 5Y-PSZ abraded with 110 μm sand showed the highest Sa value (0.76 ± 0.12 μm). Larger particle induced more compressive stresses for 3Y-TZP (p < 0.05), while only 25 μm sand induced residual stresses for 5Y-PSZ. Al2O3 sandblasting with 110 μm sand for 3Y-TZP, 90 μm sand for 4Y-PSZ, and 25 μm sand for 5Y-PSZ were considered as the recommended blasting conditions.
Collapse
|
19
|
Inokoshi M, Shimizubata M, Nozaki K, Takagaki T, Yoshihara K, Minakuchi S, Vleugels J, Van Meerbeek B, Zhang F. Impact of sandblasting on the flexural strength of highly translucent zirconia. J Mech Behav Biomed Mater 2020; 115:104268. [PMID: 33338964 DOI: 10.1016/j.jmbbm.2020.104268] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/26/2022]
Abstract
The objective of this study was to assess the influence of alumina sandblasting on the flexural strength of the latest generation of highly translucent yttria partially stabilized dental zirconia (Y-PSZ). Fully-sintered zirconia disk-shaped specimens (14.5-mm diameter; 1.2-mm thickness) of four Y-PSZ zirconia grades (KATANA HT, KATANA STML, KATANA UTML, all Kuraray Noritake; and Zpex Smile, Tosoh) were sandblasted at 0.2 MPa with 50-μm alumina (Al2O3) sand (Kulzer) or left as-sintered (control). For each zirconia grade, the yttria (Y2O3) content was determined using X-ray fluorescence (XRF). Surface roughness was assessed using 3D confocal laser microscopy. Micro-Raman spectroscopy (μ-Raman) and X-ray diffraction (XRD) were used to assess potentially induced residual stresses. Biaxial flexural strength (n = 20) was statistically compared by Weibull analysis. Focused ion beam - scanning electron microscopy (FIB/SEM) was used to observe the subsurface microstructure. Fracture surfaces after biaxial flexural strength testing were observed by SEM. KATANA UTML had the highest Y2O3 content (6 mol%), followed by KATANA STML and Zpex Smile (5 mol%), and KATANA HT (4 mol%). Al2O3-sandblasting significantly increased surface roughness of KATANA UTML and Zpex Smile. μRaman and XRD revealed the presence of residual compressive stress on all Al2O3-sandblasted surfaces. FIB/SEM revealed several sub-surface microcracks in the sandblasted specimens. Weibull analysis revealed that Al2O3-sandblasting increased the characteristic strength of KATANA HT, KATANA STML, whereas it decreased the strength of KATANA UTML. The strength enhancement after Al2O3-sandblasting of KATANA HT was the highest, followed by KATANA STML. For Zpex Smile, the influence was statistically insignificant. The impact of Al2O3-sandblasting on the Weibull modulus was controversial. The strength of zirconia after Al2O3-sandblasting is determined by the balance between microcrack formation (decreased strength) and surface compressive stress build-up (increased strength).
Collapse
Affiliation(s)
- Masanao Inokoshi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Makoto Shimizubata
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kosuke Nozaki
- Department of Fixed Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Takagaki
- Department of Operative Dentistry, Division of Oral Functional Science and Rehabilitation, School of Dentistry, Asahi University, Mizuho, Japan
| | - Kumiko Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, Kagawa, Japan; Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Pathology & Experimental Medicine, Okayama, Japan
| | - Shunsuke Minakuchi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jozef Vleugels
- KU Leuven (University of Leuven), Department of Materials Engineering, Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven, Dentistry, Leuven, Belgium
| | - Fei Zhang
- KU Leuven (University of Leuven), Department of Materials Engineering, Leuven, Belgium; KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven, Dentistry, Leuven, Belgium
| |
Collapse
|
20
|
Roulet JF, Schepker KL, Truco A, Schwarz HC, Rocha MG. Biaxial flexural strength, crystalline structure, and grain size of new commercially available zirconia-based ceramics for dental appliances produced using a new slip-casting method. J Mech Behav Biomed Mater 2020; 114:104180. [PMID: 33158788 DOI: 10.1016/j.jmbbm.2020.104180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the biaxial flexural strength, the crystalline structure, and the grain size of zirconia-based ceramics produced using a new slip-casting method. MATERIALS AND METHODS Yttria-stabilized Tetragonal Zirconia Polycrystal (Y-TZP) and Alumina Toughened Zirconia (ATZ) ceramics were purchased from different manufactures. For the experimental group, ceramics produced using a patent pending slip-casting method (Slurry, Decema GmbH) was used. Slurry ceramics (n = 42) with a diameter of 14 ± 0.2 mm were produced by a proprietary colloidal shaping process, sintered, and subsequently polished with a lapping process using 15 μm diamond particles to a thickness of 1.2 ± 0.2 mm. For the control group, ceramics produced using the hot isostatic pressure method (HIP, Metoxit AG) were used. HIP ceramics discs (n = 42) with a diameter of 15.5 ± 0.02 mm were produced by classical HIP method and subsequently machined to a thickness of 1.99 ± 0.04 mm 32 discs of each ceramic were submitted to a biaxial flexural strength test using an universal testing machine at a crosshead speed of 0.5 mm/min. Statistical analyses using two-way ANOVA and Weibull distribution were performed. 2 discs of each ceramic were analyzed using X-ray diffraction for grain crystalline phase quantification. 2 discs of each ceramic were thermally etched and scanning electron microscopy images were obtained for grain size analysis (ISO 13383-1:2012). 6 discs of each ceramic were used for density measurement using the Archimedes' method. RESULTS For both ATZ and Y-TZP ceramics, the biaxial flexural strength and the characteristic strength of ceramics produced using the Slurry method were significantly higher than ones of the ceramic produced using HIP. The structure analysis confirmed the superiority of the Slurry ceramics which had only 1.2% tetragonal phase compared to 11-16% for the HIP ceramics. Grain size distributions covered a wide range 50-800 nm; the ZrO2 grains of the Slurry ceramics were significantly smaller than the ones of the control ceramics, while the Al2O3 grain distributions were not affected by the manufacturing process. The manufacturing process had no influence on the density of both materials. CONCLUSIONS The Slurry method using a new proprietary slip-casting method to produce Y-TZP and ATZ dental ceramics presented higher biaxial flexural strength, less monoclinic phase and smaller ZrO2 grains.
Collapse
Affiliation(s)
- Jean-François Roulet
- University of Florida, Center of Dental Biomaterials, Department of Restorative Dental Science, College of Dentistry, Room D9-26, 1395 Center Drive, Gainesville, FL, 32610-0415, USA.
| | - Kristy Lee Schepker
- Research Service Center, Herbert Wertheim College of Engineering, University of Florida, PO BOX 116621, Gainesville, FL, 32611- 0001, USA
| | - Andres Truco
- Research Service Center, Herbert Wertheim College of Engineering, University of Florida, PO BOX 116621, Gainesville, FL, 32611- 0001, USA
| | | | - Mateus Garcia Rocha
- University of Florida, Center of Dental Biomaterials, Department of Restorative Dental Science, College of Dentistry, Room D9-26, 1395 Center Drive, Gainesville, FL, 32610-0415, USA
| |
Collapse
|
21
|
Furuya K, Takemoto S, Yamashita S, Sekine H, Yajima Y, Yoshinari M. Low-temperature degradation of high-strength Y-TZP (yttria-stabilized tetragonal zirconia polycrystal). Dent Mater J 2020; 39:577-586. [PMID: 31932549 DOI: 10.4012/dmj.2019-090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of this study was to investigate the low temperature degradation characteristics of 2 types of high strength yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in order to evaluate its suitability for implant body, implant superstructure or abutment. Disk-shaped conventional Y-TZP (0.25 mass% alumina) subjected to hot isostatic press treatment (HIP-Y-TZP) and Y-TZP/4Al2O3 with additional alumina (4.0 mass%) were mirror-polished. Accelerated aging tests with 134°C for 5 h at 0.2 MPa and 180°C for 5 h at 1.0 MPa were performed using an autoclave. Biaxial flexural strength and crystal phases were evaluated. Strength decreased as the proportion of monoclinic phase increased after accelerated aging treatment for both types of high-strength Y-TZPs. Despite the low alumina content, HIP-Y-TZP showed higher static strength and strength after accelerated aging treatment compared to Y-TZP/4Al2O3. However, both types of Y-TZP had adequate strength to be used as dental restorations even after accelerated aging treatment, therefore, its clinical suitability was considered high.
Collapse
Affiliation(s)
- Katsunori Furuya
- Department of Removable Partial Prosthodontics, Tokyo Dental College
| | - Shinji Takemoto
- Department of Biomedical Engineering, Iwate Medical University
| | | | - Hideshi Sekine
- Department of Prosthetic Dentistry, School of Dentistry, Ohu University
| | - Yasutomo Yajima
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
| | | |
Collapse
|
22
|
Cokic SM, Vleugels J, Van Meerbeek B, Camargo B, Willems E, Li M, Zhang F. Mechanical properties, aging stability and translucency of speed-sintered zirconia for chairside restorations. Dent Mater 2020; 36:959-972. [PMID: 32493658 DOI: 10.1016/j.dental.2020.04.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/10/2020] [Accepted: 04/30/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To evaluate the performance of zirconia ceramics sintered in a speed sintering induction furnace by comprehensive understanding of their optical and mechanical properties, microstructure, phase composition and aging stability, in comparison to ceramics sintered in a conventional furnace. METHODS Speed sintered (SS) Katana STMLSS (Kuraray Noritake) (total thermal cycle/sintering time/dwell temperature: 30min/16min/1560°C) and CEREC Zirconia (CEREC ZrSS) (Dentsply Sirona) (15min/2min/1578°C) were compared to conventionally sintered (CS) Katana STMLCS (6.8h/2h/1550°C) and inCoris TZICS (4h/2h/1510°C). The translucency parameter (TP) and contrast ratio (CR) were measured with a spectrophotometer. The chemical composition of the materials was determined by XRF and phase composition was characterized using XRD. Hydrothermal aging behavior was evaluated by measuring the tetragonal-to-monoclinic ZrO2 phase transformation after accelerated hydrothermal aging in steam at 134°C. The indentation fracture toughness, Vickers hardness and biaxial strength of the sintered ceramics were assessed. RESULTS Speed and conventionally sintered zirconia revealed similar density, microstructure, average strength and hydrothermal aging stability. Both Katana STMLSS/CS 5Y-PSZ ceramics were characterized with a higher content of cubic phase (≈53wt%), which resulted in a higher amount of Y2O3 in the remaining tetragonal ZrO2 phases compared to the 3Y-TZP CEREC ZrSS and inCoris TZICS (8 and 20wt%, respectively). The sintering program did not affect the hydrothermal aging behavior of Katana STMLSS and CEREC ZrSS. TP of Katana STMLSS (TP≈32) was not affected by speed sintering, while the translucency of CEREC ZrSS (TP=14) was significantly reduced. Hardness, fracture toughness and Weibull characteristic strength of Katana STMLSS and CEREC ZrSS also reached the optimal level, but speed sintering substantially lowered their mechanical reliability. SIGNIFICANCE Speed sintering of 3Y-TZP and 5Y-PSZ in a speed sintering induction oven appeared suitable for clinical applications. However, further studies should focus on improving of translucency and mechanical reliability of the speed-sintered zirconia ceramics.
Collapse
Affiliation(s)
- Stevan M Cokic
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Jef Vleugels
- KU Leuven (University of Leuven), Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, B-3001 Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium.
| | - Bernardo Camargo
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Evita Willems
- KU Leuven (University of Leuven), Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, B-3001 Leuven, Belgium
| | - Maoyin Li
- KU Leuven (University of Leuven), Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, B-3001 Leuven, Belgium
| | - Fei Zhang
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium; KU Leuven (University of Leuven), Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, B-3001 Leuven, Belgium
| |
Collapse
|
23
|
Zhang F, Van Meerbeek B, Vleugels J. Importance of tetragonal phase in high-translucent partially stabilized zirconia for dental restorations. Dent Mater 2020; 36:491-500. [DOI: 10.1016/j.dental.2020.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/16/2019] [Accepted: 01/14/2020] [Indexed: 02/04/2023]
|
24
|
Yoshida K. Influence of alumina air-abrasion for highly translucent partially stabilized zirconia on flexural strength, surface properties, and bond strength of resin cement. J Appl Oral Sci 2020; 28:e20190371. [PMID: 32049135 PMCID: PMC6999114 DOI: 10.1590/1678-7757-2019-0371] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/11/2019] [Indexed: 11/22/2022] Open
Abstract
Objective This study aims to evaluate the influence of different air-abrasion pressures and subsequent heat treatment on the flexural strength, surface roughness, and crystallographic phases of highly translucent partially stabilized zirconia (Y-PSZ), and on the tensile bond strength of resin cement to Y-PSZ. Methodology Fully sintered zirconia specimens were ground with SiC paper (control) and/or air-abraded with 50 µm particles of alumina at 0.1, 0.15, 0.2, or 0.3 MPa or left as-sintered. After air-abrasion at 0.2 MPa (0.2AB), additional specimens were then heated to 1500°C, and held for one hour at this temperature (0.2AB+HT1h). Flexural strength and surface roughness were evaluated. Crystalline phase identification was also carried out using X-ray diffraction. Bonded zirconia specimens with self-adhesive resin cement were stored in distilled water at 37°C for 24 h, either with or without aging (thermal cycling 4-60°C/20000). Results were analyzed statistically by ANOVA and Tukey-Kramer tests. Results The flexural strength decreased with the increase in air-abrasion pressure, while in contrast, the surface roughness increased. The lowest flexural strength and the highest roughness value were found for the 0.2AB and 0.3AB groups, respectively. All groups contained cubic-, tetragonal ( t )-, and rhombohedral ( r )-ZrO2 phases with the exception of the as-sintered group. Upon increasing the air-abrasion pressure, the relative amount of the r -ZrO2 phase increased, with a significant amount of r -ZrO2 phase being detected for the 0.2AB and 0.3AB groups. The 0.2AB+HT1h group exhibited a similar flexural strength and t -ZrO2 phase content as the as-sintered group. However, the 0.2AB group showed a significantly higher tensile bond strength (p<0.05) than the 0.2AB+HT1h group before and after aging. Conclusion Micromechanical retention by alumina air-abrasion at 0.2 MPa, in combination with chemical bonding of a resin to highly translucent Y-PSZ using a MDP-containing resin cement may enable durable bonding.
Collapse
Affiliation(s)
- Keiichi Yoshida
- Nagasaki University Hospital, Clinic of Fixed Prosthodontics, Nagasaki, Japan
| |
Collapse
|
25
|
Jansen JU, Lümkemann N, Letz I, Pfefferle R, Sener B, Stawarczyk B. Impact of high-speed sintering on translucency, phase content, grain sizes, and flexural strength of 3Y-TZP and 4Y-TZP zirconia materials. J Prosthet Dent 2019; 122:396-403. [DOI: 10.1016/j.prosdent.2019.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 01/24/2023]
|
26
|
Abstract
Objective
This study evaluates the bond strength of two compositions of aesthetic translucent zirconia (TZ).
Materials and Methods
For this evaluation, test specimens were prepared from ICE Zirkon TZ and Prettau Anterior zirconia (PAZ) that were stored in distilled water at 37°C for two time periods: T1 (24 h) and T2 (90 days) to simulate aging. Two factors were evaluated for the samples—ceramic and aging time. The samples were subjected to tests of microshear strength and fracture type and were evaluated using scanning electron microscopy.
Results
The results were analyzed using the D'Agostino test, analysis of variance, and Tukey's test (
p
< 0.01). Statistically significant differences were observed for ceramic type and aging time.
Conclusion
The results showed that PAZ provides significantly superior performance to TZ at the two aging times evaluated.
Collapse
|
27
|
Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater 2019; 91:24-34. [PMID: 31034947 DOI: 10.1016/j.actbio.2019.04.043] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/07/2019] [Accepted: 04/22/2019] [Indexed: 02/04/2023]
Abstract
High strength and translucency are generally not coincident in one restorative material and there is still a continuous development for a better balance between these two properties. Zirconia and lithium-disilicate glass-ceramics are currently the most popular alternatives for monolithic restorations. In this work, the mechanical properties and more important, the slow crack growth (SCG) resistance, which rules long-term durability, were thoroughly studied for three zirconia ceramics stabilized by 3, 4 and 5 mol% yttria in comparison to lithium-disilicate glass-ceramic. Translucency versus strength maps revealed that the more translucent zirconia compositions (i.e. with higher yttria contents) fill the gap between the standard 3 mol% yttria stabilized zirconia (3Y-TZP) and lithium-disilicate. Moreover, increasing yttria content did not always result in lower strength, as values for 3 mol% and 4 mol% yttria were the same. Independent on the yttria contents, all zirconia showed similar relative susceptibility to SCG under static and cyclic conditions and were significantly more SCG-resistant than lithium-disilicate glass ceramic. A concern with higher yttria contents (5 and 4 mol%) however could lie in the higher sensitivity to defects, resulting in a larger scatter in strength. STATEMENT OF SIGNIFICANCE: In addition to the common investigations on the generally reported strength, toughness and translucency, V-KI diagrams (crack velocity versus stress-intensity factor) from fast fracture to threshold for three newly developed zirconia were directly measured by double torsion methods under static and cyclic loading conditions. The crack-growth mechanisms were analyzed in depth. Results were compared with another popular dental ceramic, namely lithium-disilicate glass-ceramic, revealing the pros and cons of polycrystalline and glass-ceramics in terms of long-term durability. This is the first time that V-KI curves are compared for the major ceramic and glass-ceramic used for dental restorations. Strength versus translucency maps for different CAD/CAM dental restorative materials were described, showing the current indication range for zirconia ceramics.
Collapse
|
28
|
Sundh A, Kou W, Sjögren G. Effects of Pretreatment, Specimen Thickness, and Artificial Aging on Biaxial Flexural Strength of Two Types of Y-TZP Ceramics. Oper Dent 2019; 44:615-624. [PMID: 30978157 DOI: 10.2341/18-071-l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To evaluate the effects of surface treatment, specimen thickness, and aging on the biaxial flexural strength (BFS) of two types of yttria-stabilized, tetragonal zirconia polycrystal (Y-TZP) ceramics. METHODS AND MATERIALS Disc-shaped specimens, 0.4 and 1.3 mm thick, made from hot isostatic pressed (Denzir) and non-hot isostatic pressed (ZirPlus) Y-TZP, were sandblasted, heat treated, and autoclaved. The surface topography was assessed in accordance with European Standard 623-624:2004 and the BFS tests in accordance with International Organization for Standardization Standard 6872:2008. For statistical analyses, one-way Shapiro-Wilk test, analysis of variance (post hoc: least significant differences), Mann-Whitney U-test, and Pearson correlation tests (p<0.05) were used. RESULTS As delivered, the BFS of the 0.4-mm ZirPlus was >1.3-mm ZirPlus (p<0.01), and the BFS of the 0.4-mm Denzir was >1.3-mm Denzir (p<0.001). Sandblasting with 0.2 MPa reduced the BFS of the ZirPlus and Denzir discs (p<0.01), whereas sandblasting with 0.6 MPa increased the BFS of the 0.4-mm Denzir (p<0.001) and reduced the BFS of the 0.4-mm ZirPlus (p<0.05). Heat treatment significantly reduced the BFS of all the groups except for the 0.6 MPa sandblasted 0.4-mm ZirPlus. Autoclaving reduced the BFS of the as-delivered ZirPlus and Denzir specimens (p<0.001), whereas autoclaving the 0.6 MPa sandblasted and heat-treated specimens had no effect (p>0.05) on the BFS. The 0.6 MPa sandblasted, heat-treated, and autoclaved 0.4-mm Denzir exhibited higher BFS than the 0.6 MPa sandblasted, heat-treated, and autoclaved 0.4-mm ZirPlus (p<0.05). CONCLUSIONS Thickness and surface treatment of Y-TZP-based ceramics should be considered since those factors could influence the BFS of the material.
Collapse
|
29
|
Okada M, Taketa H, Torii Y, Irie M, Matsumoto T. Optimal sandblasting conditions for conventional-type yttria-stabilized tetragonal zirconia polycrystals. Dent Mater 2019; 35:169-175. [DOI: 10.1016/j.dental.2018.11.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 10/17/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
|
30
|
Lunt AJG, Chater P, Kleppe A, Baimpas N, Neo TK, Korsunsky AM. Residual strain mapping through pair distribution function analysis of the porcelain veneer within a yttria partially stabilised zirconia dental prosthesis. Dent Mater 2018; 35:257-269. [PMID: 30502963 DOI: 10.1016/j.dental.2018.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Residually strained porcelain is influential in the early onset of failure in Yttria Partially Stabilised Zirconia (YPSZ) - porcelain dental prosthesis. In order to improve current understanding it is necessary to increase the spatial resolution of residual strain analysis in these veneers. METHODS Few techniques exist which can resolve residual stress in amorphous materials at the microscale resolution required. For this reason, recent developments in Pair Distribution Function (PDF) analysis of X-ray diffraction data of dental porcelain have been exploited. This approach has facilitated high-resolution (70μm) quantification of residual strain in a YPSZ-porcelain dental prosthesis. In order to cross-validate this technique, the sequential ring-core focused ion beam and digital image correlation approach was implemented at a step size of 50μm. This semi-destructive technique exploits microscale strain relief to provide quantitative estimates of the near-surface residual strain. RESULTS The two techniques were found to show highly comparable results. The residual strain within the veneer was found to be primarily tensile, with the highest magnitude stresses located at the YPSZ-porcelain interface where failure is known to originate. Oscillatory tensile and compressive stresses were also found in a direction parallel to the interface, likely to be induced by the multiple layering used during fabrication. SIGNIFICANCE This study provides the insights required to improve prosthesis modelling, to develop new processing routes that minimise residual stress and ultimately to reduce prosthesis failure rates. The PDF approach also offers a powerful new technique for microscale strain quantification in amorphous materials.
Collapse
Affiliation(s)
- Alexander J G Lunt
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom.
| | - Philip Chater
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0QX, United Kingdom
| | - Annette Kleppe
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0QX, United Kingdom
| | - Nikolaos Baimpas
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Tee K Neo
- Specialist Dental Group, Mount Elizabeth Orchard, #08-03/08-08/08-10, 228510, Singapore
| | - Alexander M Korsunsky
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| |
Collapse
|
31
|
Akay C, Tanış MÇ, Mumcu E, Kılıçarslan MA, Şen M. Influence of nano alumina coating on the flexural bond strength between zirconia and resin cement. J Adv Prosthodont 2018; 10:43-49. [PMID: 29503713 PMCID: PMC5829286 DOI: 10.4047/jap.2018.10.1.43] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/24/2017] [Accepted: 07/04/2017] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The purpose of this in vitro study is to examine the effects of a nano-structured alumina coating on the adhesion between resin cements and zirconia ceramics using a four-point bending test. MATERIALS AND METHODS 100 pairs of zirconium bar specimens were prepared with dimensions of 25 mm × 2 mm × 5 mm and cementation surfaces of 5 mm × 2 mm. The samples were divided into 5 groups of 20 pairs each. The groups are as follows: Group I (C) – Control with no surface modification, Group II (APA) – airborne-particle-abrasion with 110 µm high-purity aluminum oxide (Al2O3) particles, Group III (ROC) – airborne-particle-abrasion with 110 µm silica modified aluminum oxide (Al2O3 + SiO2) particles, Group IV (TCS) – tribochemical silica coated with Al2O3 particles, and Group V (AlC) – nano alumina coating. The surface modifications were assessed on two samples selected from each group by atomic force microscopy and scanning electron microscopy. The samples were cemented with two different self-adhesive resin cements. The bending bond strength was evaluated by mechanical testing. RESULTS According to the ANOVA results, surface treatments, different cement types, and their interactions were statistically significant (P<.05). The highest flexural bond strengths were obtained in nanostructured alumina coated zirconia surfaces (50.4 MPa) and the lowest values were obtained in the control group (12.00 MPa), both of which were cemented using a self-adhesive resin cement. CONCLUSION The surface modifications tested in the current study affected the surface roughness and flexural bond strength of zirconia. The nano alumina coating method significantly increased the flexural bond strength of zirconia ceramics.
Collapse
Affiliation(s)
- Canan Akay
- Department of Prosthodontics, Faculty of Dentistry, Osmangazi University, Eskişehir, Turkey
| | | | - Emre Mumcu
- Department of Prosthodontics, Faculty of Dentistry, Osmangazi University, Eskişehir, Turkey
| | | | - Murat Şen
- Department of Chemistry, Polymer Chemistry Division, Hacettepe University, Beytepe, Ankara, Turkey
| |
Collapse
|
32
|
Inokoshi M, Shimizu H, Nozaki K, Takagaki T, Yoshihara K, Nagaoka N, Zhang F, Vleugels J, Van Meerbeek B, Minakuchi S. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dent Mater 2018; 34:508-518. [PMID: 29325861 DOI: 10.1016/j.dental.2017.12.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/22/2017] [Accepted: 12/20/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To assess the influence of alumina sandblasting on four highly translucent dental zirconia grades. METHODS Fully sintered zirconia disk-shaped specimens (15-mm diameter; 0.5-mm thickness) of four highly translucent yttria partially stabilized zirconia (Y-PSZ) grades (KATANA HT, KATANA STML, KATANA UTML, Kuraray Noritake; Zpex Smile, Tosoh) were sandblasted with 50-μm alumina (Al2O3) sand (Kulzer) or left 'as-sintered' (control) (n=5). For each zirconia grade, the translucency was measured using a colorimeter. Surface roughness was assessed using 3D confocal laser microscopy, upon which the zirconia grades were statistically compared for surface roughness using a Kruskal-Wallis test (n=10). X-ray diffraction (XRD) with Rietveld analysis was used to assess the zirconia-phase composition. Micro-Raman spectroscopy was used to assess the potentially induced residual stress. RESULTS The translucency of KATANA UTML was the highest (36.7±1.8), whereas that of KATANA HT was the lowest (29.5±0.9). The 'Al2O3-sandblasted' and 'as-sintered' zirconia revealed comparable surface-roughness Sa values. Regarding zirconia-phase composition, XRD with Rietveld analysis revealed that the 'as-sintered' KATANA UTML contained the highest amount of cubic zirconia (c-ZrO2) phase (71wt%), while KATANA HT had the lowest amount of c-ZrO2 phase (41wt%). KATANA STML and Zpex Smile had a comparable zirconia-phase composition (60wt% c-ZrO2 phase). After Al2O3-sandblasting, a significant amount (over 25wt%) of rhombohedral zirconia (r-ZrO2) phase was detected for all highly translucent zirconia grades. SIGNIFICANCE Al2O3-sandblasting did not affect the surface roughness of the three highly translucent Y-PSZ zirconia grades, but it changed its phase composition.
Collapse
Affiliation(s)
- Masanao Inokoshi
- Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| | - Haruki Shimizu
- Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Kosuke Nozaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan
| | - Tomohiro Takagaki
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Kumiko Yoshihara
- Center for Innovative Clinical Medicine, Okayama University Hospital, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Japan
| | - Fei Zhang
- KU Leuven (University of Leuven), Department of Materials Engineering, Belgium; KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven, Dentistry, Belgium
| | - Jozef Vleugels
- KU Leuven (University of Leuven), Department of Materials Engineering, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven, Dentistry, Belgium
| | - Shunsuke Minakuchi
- Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| |
Collapse
|
33
|
Effect of fiber post length and abutment height on fracture resistance of endodontically treated premolars prepared for zirconia crowns. Odontology 2017; 106:215-222. [PMID: 29243185 DOI: 10.1007/s10266-017-0320-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/09/2017] [Indexed: 10/18/2022]
Abstract
The purpose of this study was to compare the fracture resistance, mode of fracture, and stress distribution of endodontically treated teeth prepared with three different fiber post lengths and two different abutment heights, using both experimental and finite element (FE) approaches. Forty-eight human maxillary premolars with two roots were selected and endodontically treated. The teeth were randomly distributed into six equally sized groups (n = 8) with different combinations of post lengths (7.5, 11, and 15 mm) and abutment heights (3 and 5 mm). All the teeth restored with glass fiber post (Rely X Fiber Post, 3M ESPE, USA) and a full zirconia crown. All the specimens were thermocycled and then loaded to failure at an oblique angle of 135°. Statistical analysis was performed for the effects of post length and abutment height on failure loads using ANOVA and Tukey's honestly significant difference test. In addition, corresponding FE models of a premolar restored with a glass fiber post were developed to examine mechanical responses. The factor of post length (P < 0.01) had a significant effect on failure load. The abutment height (P > 0.05) did not have a significant effect on failure load. The highest mean fracture resistance was recorded for the 15 mm post length and 5 mm abutment height test group, which was significantly more resistant to fracture than the 7.5 mm post and 5 mm abutment height group (P < 0.05). The FE analysis showed the peak compression and tension stress values of 7.5 mm post length were higher than that of 11 and 15 mm post length. The stress value of remaining tooth decreased as the post length was increased. Within the limitations of this experimental and FE analysis study, increasing the post length inside the root of endodontically treated premolar teeth restored with glass-fiber posts increase the fracture resistance to non-axial forces. Failure mode is more favorable with reduced abutment heights.
Collapse
|
34
|
Micro-Raman Vibrational Identification of 10-MDP Bond to Zirconia and Shear Bond Strength Analysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8756396. [PMID: 29098160 PMCID: PMC5642878 DOI: 10.1155/2017/8756396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 11/17/2022]
Abstract
So far, there is no report regarding the micro-Raman vibrational fingerprint of the bonds between 10-methacryloyloxy-decyl dihydrogen phosphate (10-MDP) and zirconia ceramics. Thus, the aim of this study was to identify the Raman vibrational peaks related to the bonds of 10-MDP with zirconia, as well as the influence on microshear bond strength. Micro-Raman spectroscopy was employed to assess the vibrational peak of 10-MDP binding to zirconia. Microshear bond strength of the dual-cure resin cement to zirconia with the presence of 10-MDP in composition of experimental ceramic primer and self-adhesive resin cement was also surveyed. Statistical analysis was performed by one-way ANOVA and Tukey's test (p < 0.05). Peaks at 1545 cm−1 and 1562 cm−1 were found to refer to zirconia binding with 10-MDP. The presence of 10-MDP in both experimental ceramic primer and self-adhesive resin cement improved microshear bond strength to zirconia ceramic. It can be concluded that the nondestructive method of micro-Raman spectroscopy was able to characterize chemical bonds of 10-MDP with zirconia, which improves the bond strengths of resin cement.
Collapse
|