1
|
Abe GL, Sasaki JI, Tsuboi R, Kohno T, Kitagawa H, Imazato S. Poly(lactic acid/caprolactone) bilayer membrane achieves bone regeneration through a prolonged barrier function. J Biomed Mater Res B Appl Biomater 2024; 112:e35365. [PMID: 38247248 DOI: 10.1002/jbm.b.35365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024]
Abstract
Guided bone regeneration (GBR) is a treatment strategy used to recover bone volume. Barrier membranes are a key component of GBR protocols, and their properties can impact treatment outcomes. This study investigated the efficacy of an experimental, slow-degrading, bilayer barrier membrane for application in GBR using in vivo animal models. A synthetic copolymer of poly(lactic acid/caprolactone) (PLCL) was used to prepare a slow-degrading bilayer membrane. The biodegradability of PLCL was evaluated by subcutaneous implantation in a rat model. The barrier function of the PLCL membrane was investigated in a rat calvaria defect model and compared with commercially available membranes composed of type I collagen (Col) and poly(lactic-co-glycolic acid) (PLGA). An alveolar bone defect model in beagle dogs was used to simulate GBR protocols to evaluate the bone regeneration ability of the experimental PLCL membrane. The PLCL membrane showed slow biodegradation, resulting in an efficient and prolonged barrier function compared with commercial materials. In turn, this barrier function enabled the space-making ability of PLCL membrane and facilitated bone regeneration. In the alveolar bone defect model, significantly greater regeneration was achieved by treatment with PLCL membrane compared with Col and PLGA membranes. Additionally, a continuous alveolar ridge contour was observed in PLCL-treated bone defects. In conclusion, the PLCL bilayer membrane is a promising biomaterial for use in GBR given its slow degradation and prolonged barrier function.
Collapse
Affiliation(s)
- Gabriela L Abe
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Jun-Ichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Ririko Tsuboi
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Tomoki Kohno
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Haruaki Kitagawa
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Osaka, Japan
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
2
|
Kranz S, Heyder M, Rabe U, Liu P, Mrozinska A, Guellmar A, Berg A, Steen D, Tuckermann J, Watts DC, Sigusch B, Reise M. Osseointegration of photodynamic active biomaterials for bone regeneration in an animal bone model over a period of 12 months. Dent Mater 2023; 39:977-985. [PMID: 37709590 DOI: 10.1016/j.dental.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVES Previous efforts led to the development of two different polymeric biomaterials for periodontal regeneration with antibacterial photodynamic surface activity. The present study aimed to investigate osseointegration and bone formation of both materials in an ovine model. METHODS Both biomaterials: 1) urethane dimethacrylate-based Biomaterial 1 (BioM1) and 2) tri-armed oligoester-urethane methacrylate-based Biomaterial 2 (BioM2) are enriched with beta-tri-calcium phosphate and the photosensitizer meso-tetra(hydroxyphenyl)chlorin (mTHPC). These materials were implanted in non-critical size bone defects in the sheep femur (n = 16) and tibia (n = 8). Empty defects served as controls (n = 16). Polyfluorochrome sequential bone labeling was carried out at baseline and after 3, 6, and 12 months. Animals were sacrificed after 12 months. Bone specimens (n = 40) were fixed and subjected to microtomographic analysis (µCT) for the evaluation of the bone-volume-fraction (BV/TV), trabecular number and trabecular thickness. Subsequently, histological sections were arranged and polyfluorochrome sequential bone labeling was analyzed by confocal laser scanning microscopy (cLSM). RESULTS cLSM analysis revealed that highest remodeling and bone formation activity occurred during the second half of the study period (6-12 months). Bone formation in the tibia was significantly lower for the control (2.71 ± 1.26%) as compared to BioM1 (6.01 ± 2.99%) and BioM2 (6.45 ± 2.12%); (p = 0.006, p = 0004). Micro-computed tomography revealed a BV/TV volume fraction of 44.72 ± 9.01% in femur defects filled with BioM1 which was significantly higher compared to the control (32.27 ± 7.02%; p = 0.01). Bone architecture (trabecular number, trabecular thickness) did not significantly differ from the self-healed defects. SIGNIFICANCE Both biomaterials, especially BioM1 showed good osseointegration and bone formation characteristics and can be recommended for further examination in periodontal regeneration studies.
Collapse
Affiliation(s)
- S Kranz
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der, alten Post 4, 07743 Jena, Germany.
| | - M Heyder
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der, alten Post 4, 07743 Jena, Germany
| | - U Rabe
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der, alten Post 4, 07743 Jena, Germany
| | - P Liu
- Institute of Comparative Molecular Endocrinology, University Ulm, Helmholtzstr. 8/1, 9081 Ulm, Germany
| | - A Mrozinska
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der, alten Post 4, 07743 Jena, Germany
| | - A Guellmar
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der, alten Post 4, 07743 Jena, Germany
| | - A Berg
- Department of Biomaterials, INNOVENT e.V., Prüssingstr. 27b, 07745 Jena, Germany
| | - D Steen
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - J Tuckermann
- Institute of Comparative Molecular Endocrinology, University Ulm, Helmholtzstr. 8/1, 9081 Ulm, Germany
| | - David C Watts
- University of Manchester, School of Medical Sciences, Oxford Road, M13 9PL Manchester, UK
| | - Bernd Sigusch
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der, alten Post 4, 07743 Jena, Germany
| | - M Reise
- Department of Conservative Dentistry and Periodontology, University Hospital Jena, An der, alten Post 4, 07743 Jena, Germany
| |
Collapse
|
3
|
Bakhshandeh B, Ranjbar N, Abbasi A, Amiri E, Abedi A, Mehrabi M, Dehghani Z, Pennisi CP. Recent progress in the manipulation of biochemical and biophysical cues for engineering functional tissues. Bioeng Transl Med 2023; 8:e10383. [PMID: 36925674 PMCID: PMC10013802 DOI: 10.1002/btm2.10383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/28/2022] [Accepted: 07/16/2022] [Indexed: 11/11/2022] Open
Abstract
Tissue engineering (TE) is currently considered a cutting-edge discipline that offers the potential for developing treatments for health conditions that negatively affect the quality of life. This interdisciplinary field typically involves the combination of cells, scaffolds, and appropriate induction factors for the regeneration and repair of damaged tissue. Cell fate decisions, such as survival, proliferation, or differentiation, critically depend on various biochemical and biophysical factors provided by the extracellular environment during developmental, physiological, and pathological processes. Therefore, understanding the mechanisms of action of these factors is critical to accurately mimic the complex architecture of the extracellular environment of living tissues and improve the efficiency of TE approaches. In this review, we recapitulate the effects that biochemical and biophysical induction factors have on various aspects of cell fate. While the role of biochemical factors, such as growth factors, small molecules, extracellular matrix (ECM) components, and cytokines, has been extensively studied in the context of TE applications, it is only recently that we have begun to understand the effects of biophysical signals such as surface topography, mechanical, and electrical signals. These biophysical cues could provide a more robust set of stimuli to manipulate cell signaling pathways during the formation of the engineered tissue. Furthermore, the simultaneous application of different types of signals appears to elicit synergistic responses that are likely to improve functional outcomes, which could help translate results into successful clinical therapies in the future.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Nika Ranjbar
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Elahe Amiri
- Department of Life Science Engineering, Faculty of New Sciences and TechnologyUniversity of TehranTehranIran
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and TechnologyUniversity of TehranTehranIran
| | - Mohammad‐Reza Mehrabi
- Department of Microbial Biotechnology, School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Zahra Dehghani
- Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
| |
Collapse
|
4
|
Shaw GS, Samavedi S. Potent Particle-Based Vehicles for Growth Factor Delivery from Electrospun Meshes: Fabrication and Functionalization Strategies for Effective Tissue Regeneration. ACS Biomater Sci Eng 2021; 8:1-15. [PMID: 34958569 DOI: 10.1021/acsbiomaterials.1c00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functionalization of electrospun meshes with growth factors (GFs) is a common strategy for guiding specific cell responses in tissue engineering. GFs can exert their intended biological effects only when they retain their bioactivity and can be subsequently delivered in a temporally controlled manner. However, adverse processing conditions encountered in electrospinning can potentially disrupt GFs and diminish their biological efficacy. Further, meshes prepared using conventional approaches often promote an initial burst and rely solely on intrinsic fiber properties to provide extended release. Sequential delivery of multiple GFs─a strategy that mimics the natural tissue repair cascade─is also not easily achievable with traditional fabrication techniques. These limitations have hindered the effective use and translation of mesh-based strategies for tissue repair. An attractive alternative is the use of carrier vehicles (e.g., nanoparticles, microspheres) for GF incorporation into meshes. This review presents advances in the development of particle-integrated electrospun composites for safe and effective delivery of GFs. Compared to traditional approaches, we reveal how particles can protect GF activity, permit the incorporation of multiple GFs, decouple release from fiber properties, help achieve spatiotemporal control over delivery, enhance surface bioactivity, exert independent biological effects, and augment matrix mechanics. In presenting innovations in GF functionalization and composite engineering strategies, we also discuss specific in vitro and in vivo biological effects and their implications for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Gauri Shankar Shaw
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, NH 65, Sangareddy, Telangana 502285, India
| | - Satyavrata Samavedi
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, NH 65, Sangareddy, Telangana 502285, India
| |
Collapse
|
5
|
Farimani Z, Shamshiri AR, Asl Roosta H, Akbari S, Bohlouli M. Regenerative benefits of using growth factors in treatment of periodontal defects: A systematic review and meta-analysis with Trial Sequential Analysis on preclinical studies. J Tissue Eng Regen Med 2021; 15:964-997. [PMID: 34480421 DOI: 10.1002/term.3241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/13/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023]
Abstract
The ultimate goal in periodontal treatments is to achieve a functional and anatomical regeneration of the lost tissues. Numerous studies have in some way illustrated the beneficial effects of biologic modifiers in this process, yet they are subject to a rather large degree of diversity in their results. Thanks to the promising outcomes of bioengineering techniques in the field of periodontal regeneration, this systematic review aims to evaluate the effect of various biologic modifiers used in periodontal defects of animal models. Electronic databases (Medline, Scopus, Embase, Web of Science, and Google Scholar) were searched (March 2010-December 2020) for every study that used biomolecules for regeneration of periodontal osseous defects in animal models. Regenerated bone height or area, new cementum, new connective tissues, new regenerated periodontal ligament and the dimensions of epithelial attachment (either in mm/mm2 or percentage) were the investigated outcomes. The risk of bias of the included studies was assessed using the SYRCLE tool. In closing, there was a meta-analysis carried out on the outcomes of interest. Trial Sequential Analysis was also carried out to figure out the power of meta-analytic outcomes. From 1995 studies which were found in the initial search, 34 studies were included in this review, and 20 of them were selected for the meta-analysis. The eligible studies were categorized according to the morphology of the experimental periodontal defects as one-, two-, and three-wall intrabony defects; furcation defects, and recession-type defects. The most studied biomolecules were rhFGF-2, rhGDF-5, platelet-derived growth factor, bone morphogenetic protein-2, and enamel matrix derivative (EMD). Based on the meta-analysis findings, combined application of biomolecules with regenerative treatments could improve new bone and cementum formation near 1 mm when compared to the control groups in one, two and three-wall intrabony defect models (p < 0.001). In furcation grade II defect, the addition of biomolecules was observed to enhance bone area gain and cementum height regeneration up to almost 2 mm (p < 0.001). Trial Sequential Analysis results confirmed the significant effect in the aforementioned meta-analyses. In cases of the buccal recession model, the application of rhFGF-2 and rhGDF-5 decreased the dimension of epithelial attachments besides regenerative advantages on bone and cementum formation, but EMD deposition exerted no inhibitory effect on epithelial down-growth. Application of biologic modifiers especially FGF-2 and GDF-5, could positively improve the regeneration of periodontal tissues, particularly cementum and bone in animal models. Trial Sequential Analysis confirmed the results but the power of the evidences was high just in some subgroup meta-analyses, like bone and cementum regeneration in furcation grade II model and cementum regeneration in one-wall intrabony defects. The outcomes of this study can potentially endow clinicians with guidelines for the appropriate application of growth factors in periodontal regenerative therapies.
Collapse
Affiliation(s)
- Zeinab Farimani
- Department of Periodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Ahmad Reza Shamshiri
- Department of Community Oral Health, School of Dentistry, Research Center for Caries Prevention, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoori Asl Roosta
- Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Akbari
- Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kitagawa H, Kitagawa R, Tsuboi R, Hirose N, Thongthai P, Sakai H, Ueda M, Ono S, Sasaki JI, Ooya T, Imazato S. Development of endodontic sealers containing antimicrobial-loaded polymer particles with long-term antibacterial effects. Dent Mater 2021; 37:1248-1259. [PMID: 33972098 DOI: 10.1016/j.dental.2021.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/02/2021] [Accepted: 04/24/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this study is to prepare new dental resins with a long-lasting antimicrobial activity. Specifically, this study evaluates an approach for controlling infection in root canals using sealers containing polyhydroxyethyl methacrylate trimethylolpropane trimethacrylate (polyHEMA/TMPT) particles loaded with cetylpyridinium chloride (CPC). In addition, the physical properties of sealers containing CPC-loaded polyHEMA/TMPT particles (CLP) are determined. METHODS PolyHEMA/TMPT particles with 10 (10%-CLP) and 25wt.% CPC (25%-CLP) with different particle sizes were fabricated and incorporated in HEMA-based sealers. CPC-release profiles were evaluated over 14 days of immersion in water, followed by 14 days of storage and 14 days of water immersion. The antibacterial activity of these sealers against Enterococcus faecalis in dentinal tubules was assessed using a root-canal-infection model. Their sealing abilities were evaluated by fluid filtration and physical properties were tested according to the ISO 6876 standard. The long-term antibacterial activity of the cured sealer containing 25%-CLP (∼21μm particle diameter) was re-assessed after 1 year of storage. RESULTS After 28 days of immersion, 25%-CLP exhibited a higher and sustained CPC release unlike 10%-CLP. Residual bacteria in root dentinal tubules were eradicated by obturation with 25%-CLP-containing sealers. The incorporation of 25%-CLP (∼21μm) had no adverse effects on the sealing ability and physical properties of the sealer and resulted in long-term antibacterial activity. SIGNIFICANCE The incorporation of CPC-loaded particles in HEMA resins yielded endodontic sealers with long-term bactericidal activity against E. faecalis in root canals. These sealers can potentially be used to prevent recurrent apical periodontitis.
Collapse
Affiliation(s)
- Haruaki Kitagawa
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Ranna Kitagawa
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ririko Tsuboi
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nanako Hirose
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Pasiree Thongthai
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirohiko Sakai
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mayuka Ueda
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunka Ono
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jun-Ichi Sasaki
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tooru Ooya
- Graduate School of Engineering, Kobe University, 1-1 Rokkoudai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Tsuboi R, Kitagawa H, Imazato S. FGF-2 release and bonding/physical properties of 4-META/MMA-based adhesive resins incorporating small FGF-2-loaded polymer particles. Dent Mater 2020; 36:1586-1594. [DOI: 10.1016/j.dental.2020.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/18/2020] [Accepted: 09/10/2020] [Indexed: 11/28/2022]
|
8
|
Hibino Y, Oyane A, Shitomi K, Miyaji H. Technique for simple apatite coating on a dental resin composite with light-curing through a micro-rough apatite layer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111146. [PMID: 32806323 DOI: 10.1016/j.msec.2020.111146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 11/16/2022]
Abstract
Tooth root surfaces restored with dental resin composites exhibit inferior biocompatibility. The objective of this study was to develop a simple technique for coating apatite onto a resin composite to improve its surface biocompatibility. First, we fabricated a polymer film coated with a micro-rough apatite layer and pressed it (coating-side down) onto a viscous resin composite precursor. As a result of light-induced curing of the precursor through the overlaid film, the micro-rough apatite layer was integrated with the resin composite and, thus, transferred from the polymer film surface to the cured resin composite surface as a result of the difference in interfacial adhesion strength. The transferred apatite layer attached directly to the cured resin composite without any gaps at the microscopic level. The adhesion between the apatite layer and the cured resin composite was so strong that the layer was not peeled off even by a tape-detaching test. The flexural strength of the resulting apatite-coated resin composite was comparable to that of the clinically used resin composite while satisfying the ISO requirement for dental polymer-based restorative materials. Furthermore, the apatite-coated resin composite showed better cell compatibility than the uncoated resin composite. The present apatite coating technique is well suited for dental treatment because the coating is applied during a conventional light curing procedure through simple utilization of the apatite-coated polymer film in place of an uncoated film. The proposed technique represents a practical evolution in dental treatment using light-curing resin composites, although further in vitro and in vivo studies are needed.
Collapse
Affiliation(s)
- Yasushi Hibino
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Division of Dental Biomaterials Science, Department of Restorative and Biomaterials Sciences, School of Dentistry, Meikai University, 1-1, Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Kanako Shitomi
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13W7, Kita-ku, Sapporo, Hokkaido 060-8586, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13W7, Kita-ku, Sapporo, Hokkaido 060-8586, Japan
| |
Collapse
|
9
|
Imazato S, Kohno T, Tsuboi R, Thongthai P, Xu HH, Kitagawa H. Cutting-edge filler technologies to release bio-active components for restorative and preventive dentistry. Dent Mater J 2020; 39:69-79. [PMID: 31932551 DOI: 10.4012/dmj.2019-350] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Advancements in materials used for restorative and preventive treatment is being directed toward "bio-active" functionality. Incorporation of filler particles that release active components is a popular method to create bio-active materials, and many approaches are available to develop fillers with the ability to release components that provide "bio-protective" or "bio-promoting" properties; e.g. metal/calcium phosphate nanoparticles, multiple ion-releasing glass fillers, and non-biodegradable polymer particles. In this review paper, recent developments in cutting-edge filler technologies to release bio-active components are addressed and summarized according to their usefulness and functions, including control of bacterial infection, tooth strengthening, and promotion of tissue regeneration.
Collapse
Affiliation(s)
- Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry.,Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Tomoki Kohno
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Ririko Tsuboi
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Pasiree Thongthai
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | - Hockin Hk Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Haruaki Kitagawa
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| |
Collapse
|