1
|
Breschi L, Maravic T, Mazzitelli C, Josic U, Mancuso E, Cadenaro M, Pfeifer CS, Mazzoni A. The evolution of adhesive dentistry: From etch-and-rinse to universal bonding systems. Dent Mater 2025; 41:141-158. [PMID: 39632207 DOI: 10.1016/j.dental.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES This review aimed at presenting the mechanisms and pitfalls of adhesion to enamel and dentin, advances in the materials science and in the development of strategies to improve hybrid layer (HL) longevity. METHODS Search of the literature was performed on PubMed, Scopus and Web of Science with keywords related to the structure of the dental substrate, HL degradation mechanisms and strategies to contrast them. RESULTS Albeit the advances in the dental materials' properties, HL degradation is still a relevant and current issue in adhesive dentistry. However, adhesive materials have become more resistant and less operator sensitive, and good adhesion is currently in the hands of every practitioner. Numerous novel strategies are being developed, able to improve the resistance of adhesive resins to degradation, their ability to infiltrate and chemically bond to dentin, to remove the unbound/residual water within the HL, reinforce the dentin collagen matrix, and inhibit endogenous metalloproteinases. Many of the strategies have turned to nature in search for powerful biomodifying compounds, and for the inspiration as to mimic naturally occurring regenerative processes. SIGNIFICANCE Extensive knowledge on the structure of the dental substrate and the complexity of adhesion to dentin has led to the development of improved formulations of dental adhesives and numerous valid strategies to improve the strength and longevity of the HL. Nevertheless, for many of them the road from bench to chairside still seems long. We encourage practitioners to know their materials well and use the strategies readily available to them.
Collapse
Affiliation(s)
- Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy.
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Uros Josic
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Milena Cadenaro
- Department of Medical Sciences, University of Trieste, Strada di Fiume 447, Trieste 34149, Italy; Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, Trieste 34137, Italy
| | - Carmem S Pfeifer
- School of Dentistry, Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| |
Collapse
|
2
|
Pfeifer CS, Lucena FS, Logan MG, Nair D, Lewis SH. Current approaches to produce durable biomaterials: Trends in polymeric materials for restorative dentistry applications. Dent Mater 2024; 40:2122-2134. [PMID: 39424526 PMCID: PMC11637916 DOI: 10.1016/j.dental.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Dental caries continues to be a public health issue, especially more evident in underserved populations throughout the U.S. Unfortunately, especially with an aging population, hundreds of thousands of resin composite restorations are replaced each year due to recurring decay and fracture. According to several cohort studies, the average life span of this type of restoration is 10 years or less, depending on the caries risk level of the patient and the complexity of the restorative procedure. Any new material development must depart from the simple restoration of form paradigm, in which the filling is simply inert/biocompatible. This review will discuss novel antibiofilm structures, based on a targeted approach specifically against dysbiotic bacteria. Biofilm coalescence can be prevented by using glycosyl transferase - GTF inhibitors, in a non-bactericidal approach. On the tooth substrate side, MMP-inhibiting molecules can improve the stability of the collagen in the hybrid layer. This review will also discuss the importance of testing the materials in a physiologically relevant environment, mimicking the conditions in the mouth in terms of mechanical loading, bacterial challenge, and the presence of saliva. Ultimately, the goal of materials development is to achieve durable restorations, capable of adapting to the oral environment and resisting challenges that go beyond mechanical demands. That way, we can prevent the unnecessary loss of additional tooth structure that comes with every re-treatment. CLINICAL SIGNIFICANCE: While proper restorative technique and patient education in terms of diet and oral hygiene are crucial factors in increasing the longevity of esthetic direct restorations, materials better able to resist and interact with the conditions of the oral environment are still needed. Reproducing the success of dental amalgams with esthetic materials continues to be the Holy Grail of materials development.
Collapse
Affiliation(s)
- Carmem S Pfeifer
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA.
| | - Fernanda S Lucena
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Matthew G Logan
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Devatha Nair
- University of Colorado Anschutz Medical Campus, School of Dental Medicine, Department of Craniofacial Biology, 17500 E 19th Ave, Aurora, CO 80014, USA
| | - Steven H Lewis
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| |
Collapse
|
3
|
Resveratrol-loaded macrophage exosomes alleviate multiple sclerosis through targeting microglia. J Control Release 2023; 353:675-684. [PMID: 36521687 DOI: 10.1016/j.jconrel.2022.12.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/01/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Despite exosome promise as endogenous drug delivery vehicles, the current understanding of exosome may be insufficient to develop their various applications. Here we synthesized five sialic acid analogues with different length N-acyl side chains and screened out the optimal metabolic precursor for exosome labeling via bio-orthogonal click chemistry. In proof-of-principle labeling experiments, exosomes derived from macrophages (RAW-Exo) strongly co-localized with central nervous system (CNS) microglia. Inspired by this discovery, we developed a resveratrol-loaded RAW-Exo formulation (RSV&Exo) for multiple sclerosis (MS) treatment. Intranasal administration of RSV&Exo significantly inhibited inflammatory responses in the CNS and peripheral system in a mouse model of MS and effectively improved the clinical evolution of MS in vivo. These findings suggested the feasibility and efficacy of engineered RSV&Exo administration for MS, providing a potential therapeutic strategy for CNS diseases.
Collapse
|
4
|
Gouveia Z, Finer Y, Santerre JP. Towards the development of biostable dental resin systems - design criteria and constraints beyond ester-free chemistries. Dent Mater 2022; 38:1827-1840. [DOI: 10.1016/j.dental.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/03/2022]
|
5
|
de Lucena F, Lewis S, Fugolin A, Furuse A, Ferracane J, Pfeifer C. Triacrylamide-Based Adhesives Stabilize Bonds in Physiologic Conditions. J Dent Res 2022; 101:647-654. [PMID: 35001681 PMCID: PMC9124905 DOI: 10.1177/00220345211061736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this study, an acrylamide-based adhesive was combined with a thiourethane-based composite to improve bond stability and reduce polymerization stress, respectively, of simulated composite restorations. The stability testing was conducted under physiologic conditions, combining mechanical and bacterial challenges. Urethane dimethacrylate was combined with a newly synthesized triacrylamide (TMAAEA) or HEMA (2-hydroxyethyl-methacrylate; control) to produce a 2-step total-etch adhesive system. Methacrylate-based composites (70 wt% silanized filler) were formulated, containing thiourethane oligomers at 0 (control) or 20 wt%. Standardized preparations in human third molars were restored; then, epoxy replicas were obtained from the occlusal surfaces before and after 7-d storage in water or with Streptococcus mutans biofilm, which was tested after storage in an incubator (static) or the bioreactor (mechanical challenge). Images were obtained from the replicas (scanning electron microscopy) and cross sections of the samples (confocal laser scanning microscopy) and then analyzed to obtain measurements of gap, bacterial infiltration, and demineralization. Microtensile bond strength of specimens stored in water or biofilm was assessed in 1-mm2 stick specimens. Data were analyzed with analysis of variance and Tukey's test (α = 0.05). HEMA-based materials had greater initial gap measurements, indicating more efficient bonding for the acrylamide materials. When tested in water, the triacrylamide-based adhesive had smaller gaps in the incubator or bioreactor. In the presence of biofilm, there was less difference among materials, but the acrylamide/thiourethane combination led to statistically lower gap formation in the bioreactor. HEMA and TMAAEA-based adhesives produced statistically similar microtensile bond strengths after being stored in water for 7 d, but after the same period with biofilm-challenged specimens, the TMAAEA-based adhesives were the only ones to retain the initial bond strength values. The use of a stable multiacrylamide-based adhesive led to the preservation of the resin-dentin bonded interface after a physiologically relevant challenge. Future studies will include a multispecies biofilm model.
Collapse
Affiliation(s)
- F.S. de Lucena
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - S.H. Lewis
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - A.P.P. Fugolin
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - A.Y. Furuse
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - J.L. Ferracane
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - C.S. Pfeifer
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Balhaddad AA, Garcia IM, Mokeem L, Alsahafi R, Collares FM, Sampaio de Melo MA. Metal Oxide Nanoparticles and Nanotubes: Ultrasmall Nanostructures to Engineer Antibacterial and Improved Dental Adhesives and Composites. Bioengineering (Basel) 2021; 8:146. [PMID: 34677219 PMCID: PMC8533246 DOI: 10.3390/bioengineering8100146] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Advances in nanotechnology have unlocked exclusive and relevant capabilities that are being applied to develop new dental restorative materials. Metal oxide nanoparticles and nanotubes perform functions relevant to a range of dental purposes beyond the traditional role of filler reinforcement-they can release ions from their inorganic compounds damaging oral pathogens, deliver calcium phosphate compounds, provide contrast during imaging, protect dental tissues during a bacterial acid attack, and improve the mineral content of the bonding interface. These capabilities make metal oxide nanoparticles and nanotubes useful for dental adhesives and composites, as these materials are the most used restorative materials in daily dental practice for tooth restorations. Secondary caries and material fractures have been recognized as the most common routes for the failure of composite restorations and bonding interface in the clinical setting. This review covers the significant capabilities of metal oxide nanoparticles and nanotubes incorporated into dental adhesives and composites, focusing on the novel benefits of antibacterial properties and how they relate to their translational applications in restorative dentistry. We pay close attention to how the development of contemporary antibacterial dental materials requires extensive interdisciplinary collaboration to accomplish particular and complex biological tasks to tackle secondary caries. We complement our discussion of dental adhesives and composites containing metal oxide nanoparticles and nanotubes with considerations needed for clinical application. We anticipate that readers will gain a complete picture of the expansive possibilities of using metal oxide nanoparticles and nanotubes to develop new dental materials and inspire further interdisciplinary development in this area.
Collapse
Affiliation(s)
- Abdulrahman A. Balhaddad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
- Program in Dental Biomedical Science, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
| | - Isadora M. Garcia
- Dental Materials Department, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (I.M.G.); (F.M.C.)
| | - Lamia Mokeem
- Program in Dental Biomedical Science, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
| | - Rashed Alsahafi
- Department of Restorative Dental Sciences, College of Dentistry, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| | - Fabrício Mezzomo Collares
- Dental Materials Department, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (I.M.G.); (F.M.C.)
| | - Mary Anne Sampaio de Melo
- Program in Dental Biomedical Science, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
- Operative Dentistry Division, General Dentistry Department University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Wang W, Zhang X, Huang R, Hirschbiegel CM, Wang H, Ding Y, Rotello VM. In situ activation of therapeutics through bioorthogonal catalysis. Adv Drug Deliv Rev 2021; 176:113893. [PMID: 34333074 PMCID: PMC8440397 DOI: 10.1016/j.addr.2021.113893] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Bioorthogonal chemistry refers to any chemical reactions that can occur inside of living systems without interfering with native biochemical processes, which has become a promising strategy for modulating biological processes. The development of synthetic metal-based catalysts to perform bioorthogonal reactions has significantly expanded the toolkit of bioorthogonal chemistry for medicinal chemistry and synthetic biology. A wide range of homogeneous and heterogeneous transition metal catalysts (TMCs) have been reported, mediating different transformations such as cycloaddition reactions, as well as bond forming and cleaving reactions. However, the direct application of 'naked' TMCs in complex biological media poses numerous challenges, including poor water solubility, toxicity and catalyst deactivation. Incorporating TMCs into nanomaterials to create bioorthogonal nanocatalysts can solubilize and stabilize catalyst molecules, with the decoration of the nanocatalysts used to provide spatiotemporal control of catalysis. This review presents an overview of the advances in the creation of bioorthogonal nanocatalysts, highlighting different choice of nano-scaffolds, and the therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Wenjie Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | | | - Huaisong Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| |
Collapse
|
8
|
Gomes IB, Simões M, Simões LC. Copper Surfaces in Biofilm Control. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2491. [PMID: 33322518 PMCID: PMC7764739 DOI: 10.3390/nano10122491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
Biofilms are structures comprising microorganisms associated to surfaces and enclosed by an extracellular polymeric matrix produced by the colonizer cells. These structures protect microorganisms from adverse environmental conditions. Biofilms are typically associated with several negative impacts for health and industries and no effective strategy for their complete control/eradication has been identified so far. The antimicrobial properties of copper are well recognized among the scientific community, which increased their interest for the use of these materials in different applications. In this review the use of different copper materials (copper, copper alloys, nanoparticles and copper-based coatings) in medical settings, industrial equipment and plumbing systems will be discussed considering their potential to prevent and control biofilm formation. Particular attention is given to the mode of action of copper materials. The putative impact of copper materials in the health and/or products quality is reviewed taking into account their main use and the possible effects on the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Inês B. Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Lúcia C. Simões
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| |
Collapse
|
9
|
Sinha J, Dobson A, Bankhar O, Podgórski M, Shah PK, Zajdowicz SLW, Alotaibi A, Stansbury JW, Bowman CN. Vinyl sulfonamide based thermosetting composites via thiol-Michael polymerization. Dent Mater 2020; 36:249-256. [PMID: 31791733 PMCID: PMC7012731 DOI: 10.1016/j.dental.2019.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/15/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To assess the performance of thiol Michael photocurable composites based on ester-free thiols and vinyl sulfonamides of varying monomer structures and varied filler loadings and to contrast the properties of the prototype composites with conventional BisGMA-TEGDMA methacrylate composite. METHODS Synthetic divinyl sulfonamides and ester-free tetrafunctional thiol monomers were utilized for thiol-Michael composite development with the incorporation of thiolated microfiller. Polymerization kinetics was investigated using FTIR spectroscopy. Resin viscosities were assessed with rheometry. Water uptake properties were assessed according to standardized methods. Thermomechanical properties were analyzed by dynamic mechanical analysis. Flexural modulus/strength and flexural toughness were measured on a universal testing machine in three-point bending testing mode. RESULTS The vinyl sulfonamide-based thiol-Michael resin formulation demonstrated a wide range of viscosities with a significant increase in the functional group conversion when compared to the BisGMA-TEGDMA system. The two different types of vinyl sulfonamide under investigation demonstrated significant differences towards the water sorption. Tertiary vinyl sulfonamide did not undergo visible swelling whereas the secondary vinyl sulfonamide composite swelled extensively in water. With the introduction of rigid monomer into the polymer matrix the glass transition temperature increased and so increased the toughness. Glassy thiol-Michael composites were obtained by ambient curing. SIGNIFICANCE Employing the newly developed step-growth thiol-Michael resins in dental composites will provide structural uniformity, improved stability and lower water sorption.
Collapse
Affiliation(s)
- Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Adam Dobson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Osamah Bankhar
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Maciej Podgórski
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States; Department of Polymer Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University, Gliniana St. 33, Lublin 20-614, Poland
| | - Parag K Shah
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Sheryl L W Zajdowicz
- Department of Biology, Metropolitan State University of Denver, PO Box 173362, Campus Box #53, Denver, CO 80217, United States
| | - Abdulaziz Alotaibi
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Jeffrey W Stansbury
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States; Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, Aurora, CO, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States.
| |
Collapse
|
10
|
The Organic Matrix of Restorative Composites and Adhesives. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Balhaddad AA, Kansara AA, Hidan D, Weir MD, Xu HHK, Melo MAS. Toward dental caries: Exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials. Bioact Mater 2018; 4:43-55. [PMID: 30582079 PMCID: PMC6299130 DOI: 10.1016/j.bioactmat.2018.12.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 01/06/2023] Open
Abstract
Millions of people worldwide suffer from a toothache due to tooth cavity, and often permanent tooth loss. Dental caries, also known as tooth decay, is a biofilm-dependent infectious disease that damages teeth by minerals loss and presents a high incidence of clinical restorative polymeric fillings (tooth colored fillings). Until now, restorative polymeric fillings present no bioactivity. The complexity of oral biofilms contributes to the difficulty in developing effective novel dental materials. Nanotechnology has been explored in the development of bioactive dental materials to reduce or modulate the activities of caries-related bacteria. Nano-structured platforms based on calcium phosphate and metallic particles have advanced to impart an anti-caries potential to restorative materials. The bioactivity of these platforms induces prevention of mineral loss of the hard tooth structure and antibacterial activities against caries-related pathogens. It has been suggested that this bioactivity could minimize the incidence of caries around restorations (CARS) and increase the longevity of such filling materials. The last few years witnessed growing numbers of studies on the preparation evaluations of these novel materials. Herein, the caries disease process and the role of pathogenic caries-related biofilm, the increasing incidence of CARS, and the recent efforts employed for incorporation of bioactive nanoparticles in restorative polymer materials as useful strategies for prevention and management of caries-related-bacteria are discussed. We highlight the status of the most advanced and widely explored interaction of nanoparticle-based platforms and calcium phosphate compounds with an eye toward translating the potential of these approaches to the dental clinical reality. Current progress and future applications of functional nanoparticles and remineralizing compounds incorporated in dental direct restorative materials. Overview of the antibacterial and remineralizing mechanisms presenting direct and indirect implications on the tooth mineral loss. These investigations, although in the initial phase of evidence are necessary and their results are encouraging and open the doors to future clinical studies that will allow the therapeutic value of nanotechnology-based restorative materials to be established.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Biomaterials & Tissue Engineering, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam, Saudi Arabia
| | - Anmar A Kansara
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Department of Restorative Dentistry, Umm Al-Qura University, College of Dentistry, Makkah, Saudi Arabia
| | - Denise Hidan
- Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Michael D Weir
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Biomaterials & Tissue Engineering, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Hockin H K Xu
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Biomaterials & Tissue Engineering, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Mary Anne S Melo
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Biomaterials & Tissue Engineering, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| |
Collapse
|
12
|
Van der Laan HL, Zajdowicz SL, Kuroda K, Bielajew BJ, Davidson TA, Gardinier J, Kohn DH, Chahal S, Chang S, Liu J, Gerszberg J, Scott TF, Clarkson BH. Biological and Mechanical Evaluation of Novel Prototype Dental Composites. J Dent Res 2018; 98:91-97. [PMID: 30189149 DOI: 10.1177/0022034518795673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The breakdown of the polymeric component of contemporary composite dental restorative materials compromises their longevity, while leachable compounds from these materials have cellular consequences. Thus, a new generation of composite materials needed to be designed to have a longer service life and ensure that any leachable compounds are not harmful to appropriate cell lines. To accomplish this, we have developed concurrent thiol-ene-based polymerization and allyl sulfide-based addition-fragmentation chain transfer chemistries to afford cross-linked polymeric resins that demonstrate low shrinkage and low shrinkage stress. In the past, the filler used in dental composites mainly consisted of glass, which is biologically inert. In several of our prototype composites, we introduced fluorapatite (FA) crystals, which resemble enamel crystals and are bioactive. These novel prototype composites were benchmarked against similarly filled methacrylate-based bisphenol A diglycidyl ether dimethacrylate / triethylene glycol dimethacrylate (bisGMA/TEGDMA) composite for their cytotoxicity, mechanical properties, biofilm formation, and fluoride release. The leachables at pH 7 from all the composites were nontoxic to dental pulp stem cells. There was a trend toward an increase in total toughness of the glass-only-filled prototype composites as compared with the similarly filled bisGMA/TEGDMA composite. Other mechanical properties of the glass-only-filled prototype composites were comparable to the similarly filled bisGMA/TEGDMA composite. Incorporation of the FA reduced the mechanical properties of the prototype and bisGMA/TEGDMA composite. Biofilm mass and colony-forming units per milliliter were reduced on the glass-only-filled prototype composites as compared with the glass-only-filled bisGMA/TEGDMA composite and were significantly reduced by the addition of FA to all composites. Fluoride release at pH 7 was greatest after 24 h for the bisGMA/TEGDMA glass + FA composite as compared with the similarly filled prototypes, but overall the F- release was marginal and not at a concentration to affect bacterial metabolism.
Collapse
Affiliation(s)
- H L Van der Laan
- 1 Macromolecular Science and Engineering, College of Engineering, University of Michigan, Ann Arbor MI, USA
| | - S L Zajdowicz
- 2 Department of Biology, Metropolitan State University of Denver, Denver, CO, USA
| | - K Kuroda
- 1 Macromolecular Science and Engineering, College of Engineering, University of Michigan, Ann Arbor MI, USA.,3 Department of Biologic and Materials Sciences, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - B J Bielajew
- 3 Department of Biologic and Materials Sciences, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - T A Davidson
- 3 Department of Biologic and Materials Sciences, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - J Gardinier
- 3 Department of Biologic and Materials Sciences, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - D H Kohn
- 3 Department of Biologic and Materials Sciences, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - S Chahal
- 4 Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - S Chang
- 4 Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - J Liu
- 4 Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - J Gerszberg
- 5 Department of Chemical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - T F Scott
- 1 Macromolecular Science and Engineering, College of Engineering, University of Michigan, Ann Arbor MI, USA.,5 Department of Chemical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - B H Clarkson
- 4 Department of Cariology, Restorative Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|