1
|
Oleniacz-Trawińska M, Kotela A, Kensy J, Kiryk S, Dobrzyński W, Kiryk J, Gerber H, Fast M, Matys J, Dobrzyński M. Evaluation of Factors Affecting Fluoride Release from Compomer Restorative Materials: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1627. [PMID: 40271845 PMCID: PMC11990332 DOI: 10.3390/ma18071627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVE This systematic review evaluates the evidence on factors affecting fluoride release from compomer restorative materials to provide clinicians with insights for optimizing their use in caries prevention. METHODS In February 2025, an extensive digital search was conducted across reputable databases such as PubMed, Web of Science, and Scopus. The search utilized carefully chosen keywords: "fluoride release" AND "compomer" and followed the PRISMA guidelines. Initially, 287 articles were identified, but after applying the inclusion criteria, 34 studies were selected for review. RESULTS This review found that fluoride release from compomers follows an initial burst phase before stabilizing at lower levels. Fifteen studies proved that compomers release less fluoride than glass ionomer cements but more than composite resins, as concluded from six studies. The release rate is significantly influenced by pH, with acidic conditions enhancing fluoride diffusion. Some studies also highlighted the potential for fluoride recharge through external applications such as toothpaste or varnish. CONCLUSION Compomer restorative materials offer a steady, moderate fluoride release that supports caries prevention. Their effectiveness is enhanced in acidic environments, supporting their use in high-risk patients.
Collapse
Affiliation(s)
| | - Agnieszka Kotela
- Medical Center of Innovation LLC, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Julia Kensy
- Faculty of Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland;
| | - Sylwia Kiryk
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (S.K.); (M.D.)
| | - Wojciech Dobrzyński
- Department of Dentofacial Orthopedics and Orthodontics, Division of Facial Abnormalities, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Jan Kiryk
- Department of Dental Surgery, Wroclaw Medical University, 50-425 Wroclaw, Poland;
| | - Hanna Gerber
- Department of Maxillofacial Surgery, Wrocław Medical University, 50-556 Wrocław, Poland;
| | - Magdalena Fast
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
| | - Jacek Matys
- Department of Dental Surgery, Wroclaw Medical University, 50-425 Wroclaw, Poland;
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (S.K.); (M.D.)
| |
Collapse
|
2
|
Zhang J, Yang Y, Chen Y, Chen X, Li A, Wang J, Shen D, Zheng S. A review of new generation of dental restorative resin composites with antibacterial, remineralizing and self-healing capabilities. DISCOVER NANO 2024; 19:189. [PMID: 39570468 PMCID: PMC11582236 DOI: 10.1186/s11671-024-04151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Dental restorative resin composites are widely used to repair tooth decay owing to attractive esthetics, adequate mechanical properties and minimally invasive tooth structure preparations. Nevertheless, dental restorative resin composites still face challenges because of their relatively high failure rate and short lifespan caused by secondary caries and bulk fracture. Thus, attempts have been carried out to explore a new generation of dental restorative resin composites with antibacterial, remineralizing, and self-healing capabilities to inhibit bacteria and lengthen the lifetime of the restorations. Such novel restorative composites can inhibit bacterial activity, reduce acid production, promote mineral regeneration and present a renewable advantage to achieve a higher performance, which are inspiring and provide support for further basic and clinical research. In this review, antibacterial dental restorative resin composites are first introduced, followed by remineralizing, self-healing, and multifunctional dental resin composites with two or more of the functions mentioned above. Meanwhile, we explain the mechanism of the corresponding dental restorative resin composites and describe their characteristics. Finally, we conclude and put forward prospects. This review will attract both researchers and clinicians in this field and help to provide innovative ideas to design new restorative resin composites for biomedical applications.
Collapse
Affiliation(s)
- Jinshuang Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yujin Yang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yaqing Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Xu Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Ang Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Juan Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Daojun Shen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Shunli Zheng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
3
|
Zheng L, Zhang Y, Bai Y, Zhang Z, Wu Q. Study on the mechanical and aging properties of an antibacterial composite resin loaded with fluoride-doped nano-zirconia fillers. Front Bioeng Biotechnol 2024; 12:1397459. [PMID: 38846803 PMCID: PMC11153679 DOI: 10.3389/fbioe.2024.1397459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Preventing the occurrence of secondary caries serves as one of the significant issues in dental clinic, thus make it indispensable to improving the properties of conventional composite resin (CR) by developing a novel CR. In present study, two groups of experimental CRs loaded with different contents of fluoride-doped nano-zirconia fillers (25 wt% and 50 wt%) were fabricated. The surface topography, mechanical performance, fluoride release, antibacterial effect, aging property and cytotoxicity of the experimental CRs were evaluated subsequently. A uniform distribution of the F-zirconia fillers over the whole surface of resin matrix could be observed. The experimental CRs showed continuous fluoride release within 28 days, which was positively correlated with the content of F-zirconia fillers. Moreover, the amount of fluoride release increased in the acidic buffer. Addition of F-zirconia fillers could improve the color stability, wear resistance and microhardness of the experimental CRs, without reducing the flexure strength. Furtherly, the fluoride ions released continuously from the experimental CRs resulted in effective contact and antibacterial properties, while they showed no cytotoxicity. As a consequence, considerations can be made to employ this new kind of composite resin loaded with fluoride-doped nano-zirconia fillers to meet clinical requirements when the antimicrobial benefits are desired.
Collapse
Affiliation(s)
- Liyuan Zheng
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Yi Zhang
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Yuming Bai
- Department of Orthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Zhisheng Zhang
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Qianju Wu
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| |
Collapse
|
4
|
Wang Y, Xiao S, Lv S, Wang X, Wei R, Ma Y. Mechanical and Antimicrobial Properties of Boron Nitride/Methacrylic Acid Quaternary Ammonium Composites Reinforced Dental Flowable Resins. ACS Biomater Sci Eng 2024; 10:1796-1807. [PMID: 38346133 DOI: 10.1021/acsbiomaterials.3c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Dental resin composites (DRCs) are commonly used to restore teeth affected by dental caries or defects. These materials must possess excellent properties to withstand the complex oral environment. The objective of this study was to prepare and characterize Boron nitride nanosheets (BNN)/ dimethyl amino hexadecyl methacrylate (DMAHDM) composites (BNN/DMA), and to evaluate them as functional fillers to enhance the mechanical and antimicrobial properties of dental resins. The BNN/DMA composites were successfully prepared under the theoretical guidance of molecular dynamics (MD), and then the physicochemical and morphological characterization of the BNN/DMA composites were carried out by using various test methods, such as FT-IR, XRD, UV-vis spectroscopy, SEM, TEM, and AFM. It was doped into the dental flowable resin in a certain proportion, and the results showed that the flexural strength (FS), elastic modulus (EM), compressive strength (CS), and microhardness (MH) of the modified resin composites were increased by 53.29, 47.8, 97.59, and 37.1%, respectively, with the addition of 0.8 wt % of BNN/DMA composite fillers. It has a good inhibition effect on Streptococcus mutans, with an inhibition rate as high as 90.43%. Furthermore, this effect persists even after one month of aging. In conclusion, the modification of flowable resins with low-concentration BNN/DMA composites favorably integrates the mechanical properties and long-term antimicrobial activity of dental resins. At the same time, they have good biocompatibility and do not affect the aesthetics. The BNN/DMA composite modified flowable resin has the potential to become a new type of antimicrobial dental restorative material.
Collapse
Affiliation(s)
- Yuting Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Shengjie Xiao
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Siyi Lv
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Xiuzhi Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Rong Wei
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
| | - Yu Ma
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, PR China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou 730000, PR China
- Biointerfaces Institute, University of Michigan, Ann Arbor,Michigan 48109, United States
| |
Collapse
|
5
|
Jiang ES, Moon W, Lim BS, Chang J, Chung SH. Cytotoxicity and reactive oxygen species production induced by different co-monomer eluted from nanohybrid dental composites. BMC Oral Health 2023; 23:55. [PMID: 36717844 PMCID: PMC9887763 DOI: 10.1186/s12903-023-02710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Safety issues for dental restorative composites are critical to material selection, but, limited information is available to dental practitioners. This study aimed to compare the chemical and biological characteristics of three nanohybrid dental composites by assessing filler particle analysis, monomer degree of conversion (DC), the composition of eluates, and cytotoxicity and reactive oxygen species (ROS) production in fibroblasts. METHODS Three nanohybrid composites (TN, Tetric N-Ceram; CX, Ceram X Sphere Tec One; and DN, DenFil NX) were used. The size distribution and morphology of the filler particles were analysed using scanning electron microscopy (n = 5). The DC was measured via micro-Raman spectroscopy (n = 5). For the component analysis, methanol eluates from the light-polymerised composites were evaluated by gas chromatography/mass spectrometry (n = 3). The eluates were prepared from the polymerised composites after 24 h in a cell culture medium. A live/dead assay (n = 9) and Water-Soluble Tetrazolium-1 assay (n = 9) were performed and compared with negative and positive controls. The ROS in composites were compared with NC. Statistical significance in differences was assessed using a t-test and ANOVA (α = 0.05). RESULTS Morphological variations in different-sized fillers were observed in the composites. The DC values were not significantly different among the composites. The amounts of 2-hydroxyethyl methacrylate (HEMA) were higher in TN than DN (p = 0.0022) and triethylene glycol dimethacrylate (TEGDMA) in CX was higher than in others (p < 0.0001). The lowest cell viability was shown in CX (p < 0.0001) and the highest ROS formation was detected in TN (p < 0.0001). CONCLUSIONS Three nanohybrid dental composites exhibited various compositions of filler sizes and resin components, resulting in different levels of cytotoxicity and ROS production. Chemical compositions of dental composites can be considered with their biological impact on safety issues in the intraoral use of dental restorative composites. CX with the highest TEGDMA showed the highest cytotoxicity induced by ROS accumulation. DN with lower TEGDMA and HEMA presented the highest cell viability.
Collapse
Affiliation(s)
- En-Shi Jiang
- grid.31501.360000 0004 0470 5905Department of Dental Biomaterials Science, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080 Republic of Korea ,grid.459480.40000 0004 1758 0638Department of Stomatology, Yanbian University and Affiliated Hospital of Yanbian University, Yanji, 133000 China
| | - Wonjoon Moon
- grid.31501.360000 0004 0470 5905Department of Dental Biomaterials Science, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080 Republic of Korea ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA 02115 USA ,grid.32224.350000 0004 0386 9924Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Bum-Soon Lim
- grid.31501.360000 0004 0470 5905Department of Dental Biomaterials Science, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080 Republic of Korea
| | - Juhea Chang
- National Dental Care Center for Persons With Special Needs, Seoul National University Dental Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
| | - Shin Hye Chung
- Department of Dental Biomaterials Science, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
6
|
Szabados M, Szabados T, Mucsi R, Sápi A, Kónya Z, Kukovecz Á, Pálinkó I, Sipos P. Facile preparation of nickel-poor layered double hydroxides from mechanochemically pretreated gibbsite with a variety of interlamellar anions and their use as catalyst precursors for CO2 hydrogenation. MATERIALS RESEARCH BULLETIN 2023; 157:112010. [DOI: 10.1016/j.materresbull.2022.112010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
7
|
Surface modification of two-dimensional layered double hydroxide nanoparticles with biopolymers for biomedical applications. Adv Drug Deliv Rev 2022; 191:114590. [PMID: 36341860 DOI: 10.1016/j.addr.2022.114590] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/24/2022] [Accepted: 10/25/2022] [Indexed: 01/24/2023]
Abstract
Layered double hydroxides (LDHs) are appealing nanomaterials for (bio)medical applications and their potential is threefold. One can gain advantage of the structure of LDH frame (i.e., layered morphology), anion exchanging property towards drugs with acidic character and tendency for facile surface modification with biopolymers. This review focuses on the third aspect, as it is necessary to evaluate the advantages of polymer adsorption on LDH surfaces. Beside the short discussion on fundamental and structural features of LDHs, LDH-biopolymer interactions will be classified in terms of the effect on the colloidal stability of the dispersions. Thereafter, an overview on the biocompatibility and biomedical applications of LDH-biopolymer composite materials will be given. Finally, the advances made in the field will be summarized and future research directions will be suggested.
Collapse
|
8
|
Kumar D, Bolskar RD, Mutreja I, Jones RS. Methacrylate Polymers With “Flipped External” Ester Groups: A Review. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.923780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Current resin composites have favorable handling and upon polymerization initial physical properties that allow for efficient material replacement of removed carious tooth structure. Dental resin composites have long term durability limitations due to the hydrolysis of ester bonds within the methacrylate based polymer matrix. This article outlines the importance of ester bonds positioned internal to the carbon-carbon double bond in current methacrylate monomers. Water and promiscuous salivary/bacterial esterase activity can initiate ester bond hydrolysis that can sever the polymer backbone throughout the material. Recent studies have custom synthesized, with the latest advances in modern organic chemical synthesis, a novel molecule named ethylene glycol bis (ethyl methacrylate) (EGEMA). EGEMA was designed to retain the reactive acrylate units. Upon intermolecular polymerization of vinyl groups, EGEMA ester groups are positioned outside the backbone of the polymer chain. This review highlights investigation into the degradation resistance of EGEMA using buffer, esterase, and microbial storage assays. Material samples of EGEMA had superior final physical and mechanical properties than traditional ethylene glycol dimethacrylate (EGDMA) in all degradation assays. Integrating bioinformatics-based biodegradation predictions to the experimental results of storage media analyzed by LC/GC-MS revealed that hydrolysis of EGEMA generated small amounts of ethanol while preserving the strength bearing polymer backbone. Prior studies support investigation into additional custom synthesized methacrylate polymers with “flipped external” ester groups. The long term goal is to improve clinical durability compared to current methacrylates while retaining inherent advantages of acrylic based chemistry, which may ease implementation of these novel methacrylates into clinical practice.
Collapse
|
9
|
Chen Y, Yang B, Cheng L, Xu HHK, Li H, Huang Y, Zhang Q, Zhou X, Liang J, Zou J. Novel Giomers Incorporated with Antibacterial Quaternary Ammonium Monomers to Inhibit Secondary Caries. Pathogens 2022; 11:pathogens11050578. [PMID: 35631099 PMCID: PMC9147272 DOI: 10.3390/pathogens11050578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to develop novel modified giomers by incorporating the antibacterial quaternary ammonium monomers (QAMs), dimethylaminododecyl methacrylate (DMADDM) or dimethylaminohexadecyl methacrylate (DMAHDM) into a commercial giomer. The material performances including mechanical properties, surface characteristics, color data, cytotoxicity and fluoride release of the novel giomers were evaluated. Antibacterial activity against severe early childhood caries (S-ECC) saliva-derived biofilms was assessed by lactic acid production measurement, MTT assay, biofilm staining and 16S rRNA sequencing. A rat model was developed and the anti-caries effect was investigated by micro-CT scanning and modified Keyes’ scoring. The results showed that the material properties of the QAMs groups were comparable to those of the control group. The novel giomers significantly inhibited lactic acid production and biofilm viability of S-ECC saliva-derived biofilms. Furthermore, caries-related genera such as Streptococcus and Lactobacillus reduced in QAMs groups, which showed their potential to change the microbial compositions. In the rat model, lesion depth, mineral loss and scoring of the QAMs groups were significantly reduced, without side effects on oral tissues. In conclusion, the novel giomers incorporated with antibacterial QAMs could inhibit the cariogenic biofilms and help prevent secondary caries, with great potential for future application in restorative treatment.
Collapse
Affiliation(s)
- Yandi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bina Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Hao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingou Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.L.); (J.Z.)
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.L.); (J.Z.)
| |
Collapse
|
10
|
Cao J, Yang DL, Wang D, Wang JX. Spray-drying-assisted fabrication of CaF2/SiO2 nanoclusters for dental restorative composites. Dent Mater 2022; 38:835-847. [DOI: 10.1016/j.dental.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022]
|
11
|
The power of weak ion-exchange resins assisted by amelogenin for natural remineralization of dental enamel: an in vitro study. Odontology 2022; 110:545-556. [PMID: 35147809 PMCID: PMC9170625 DOI: 10.1007/s10266-022-00688-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/20/2022] [Indexed: 10/28/2022]
Abstract
This study aims to develop an innovative dental product to remineralize dental enamel by a proper combination of ion-exchange resins as controlled release of mineral ions that form dental enamel, in the presence of amelogenin to guide the appropriate crystal growth. The novel product proposed consists of a combination of ion-exchange resins (weak acid and weak base) individually loaded with the remineralizing ions: Ca2+, PO43- and F-, also including Zn2+ in a minor amount as antibacterial, together with the protein amelogenin. Such cocktail provides onsite controlled release of the ions necessary for enamel remineralization due to the weak character of the resins and at the same time, a guiding tool for related crystal growth by the indicated protein. Amelogenin protein is involved in the structural development of natural enamel and takes a key role in controlling the crystal growth morphology and alignment at the enamel surface. Bovine teeth were treated by applying the resins and protein together with artificial saliva. Treated teeth were evaluated with nanoindentation, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The innovative material induces the dental remineralization creating a fluorapatite layer with a hardness equivalent to sound enamel, with the appropriate alignment of corresponding nanocrystals, being the fluorapatite more acid resistant than the original mineral. Our results suggest that the new product shows potential for promoting long-term remineralization leading to the inhibition of caries and protection of dental structures.
Collapse
|
12
|
Szabados M, Ádám AA, Kása Z, Baán K, Mucsi R, Sápi A, Kónya Z, Kukovecz Á, Sipos P. M(II)Al 4 Type Layered Double Hydroxides-Preparation Using Mechanochemical Route, Structural Characterization and Catalytic Application. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4880. [PMID: 34500969 PMCID: PMC8432663 DOI: 10.3390/ma14174880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/02/2022]
Abstract
The synthesis of the copper-poor and aluminum-rich layered double hydroxides (LDHs) of the CuAl4 type was optimized in detail in this work, by applying an intense mechanochemical treatment to activate the gibbsite starting reagent. The phase-pure forms of these LDHs were prepared for the first time; using copper nitrate and perchlorate salts during the syntheses turned out to be the key to avoiding the formation of copper hydroxide sideproducts. Based on the use of the optimized syntheses parameters, the preparation of layered triple and multiple hydroxides was also attempted using Ni(II), Co(II), Zn(II) and even Mg(II) ions. These studies let us identify the relative positions of the incorporating cations in the well-known selectivity series as Ni2+ >> Cu2+ >> Zn2+ > Co2+ >> Mg2+. The solids formed were characterized by using powder X-ray diffractometry, UV-Vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. The catalytic potential of the samples was investigated in carbon monoxide oxidation reactions at atmospheric pressure, supported by an in situ diffuse reflectance infrared spectroscopy probe. All solids proved to be active and the combination of the nickel and cobalt incorporation (which resulted in a NiCoAl8 layered triple hydroxide) brought outstanding benefits regarding low-temperature oxidation and increased carbon monoxide conversion values.
Collapse
Affiliation(s)
- Márton Szabados
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary;
- Material and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, H-6720 Szeged, Hungary; (A.A.Á.); (Z.K.)
| | - Adél Anna Ádám
- Material and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, H-6720 Szeged, Hungary; (A.A.Á.); (Z.K.)
| | - Zsolt Kása
- Material and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, H-6720 Szeged, Hungary; (A.A.Á.); (Z.K.)
| | - Kornélia Baán
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary; (K.B.); (R.M.); (A.S.); (Z.K.); (Á.K.)
| | - Róbert Mucsi
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary; (K.B.); (R.M.); (A.S.); (Z.K.); (Á.K.)
| | - András Sápi
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary; (K.B.); (R.M.); (A.S.); (Z.K.); (Á.K.)
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary; (K.B.); (R.M.); (A.S.); (Z.K.); (Á.K.)
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich B tér 1, H-6720 Szeged, Hungary
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, H-6720 Szeged, Hungary; (K.B.); (R.M.); (A.S.); (Z.K.); (Á.K.)
| | - Pál Sipos
- Material and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, H-6720 Szeged, Hungary; (A.A.Á.); (Z.K.)
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| |
Collapse
|
13
|
Sun Q, Zhang L, Bai R, Zhuang Z, Zhang Y, Yu T, Peng L, Xin T, Chen S, Han B. Recent Progress in Antimicrobial Strategies for Resin-Based Restoratives. Polymers (Basel) 2021; 13:1590. [PMID: 34069312 PMCID: PMC8156482 DOI: 10.3390/polym13101590] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Repairing tooth defects with dental resin composites is currently the most commonly used method due to their tooth-colored esthetics and photocuring properties. However, the higher than desirable failure rate and moderate service life are the biggest challenges the composites currently face. Secondary caries is one of the most common reasons leading to repair failure. Therefore, many attempts have been carried out on the development of a new generation of antimicrobial and therapeutic dental polymer composite materials to inhibit dental caries and prolong the lifespan of restorations. These new antimicrobial materials can inhibit the formation of biofilms, reduce acid production from bacteria and the occurrence of secondary caries. These results are encouraging and open the doors to future clinical studies on the therapeutic value of antimicrobial dental resin-based restoratives. However, antimicrobial resins still face challenges such as biocompatibility, drug resistance and uncontrolled release of antimicrobial agents. In the future, we should focus on the development of more efficient, durable and smart antimicrobial dental resins. This article focuses on the most recent 5 years of research, reviews the current antimicrobial strategies of composite resins, and introduces representative antimicrobial agents and their antimicrobial mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.S.); (L.Z.); (R.B.); (Z.Z.); (Y.Z.); (L.P.); (T.X.)
| | | | | | - Si Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.S.); (L.Z.); (R.B.); (Z.Z.); (Y.Z.); (L.P.); (T.X.)
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.S.); (L.Z.); (R.B.); (Z.Z.); (Y.Z.); (L.P.); (T.X.)
| |
Collapse
|
14
|
Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al-LDH. Polymers (Basel) 2021; 13:polym13091525. [PMID: 34068553 PMCID: PMC8126037 DOI: 10.3390/polym13091525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 11/30/2022] Open
Abstract
The goal of this study was to investigate the effect of the structure of Mn-Al layered double hydroxide (LDH) on the adhesion behavior of composite adhesives on two Al alloys (L3005 and L8079). The composite adhesives were made out of the UV-curing Bisphenol A glycidylmethacrylate/triethylene glycol dimethacrylate (BT) as polymer matrix and the addition of 1, 3, and 5 wt. % of Mn-Al LDH as adhesion enhancers. Adhesion was evaluated by using the micro Vickers hardness testing procedure. The wetting angle of composite adhesives to the Al substrates was measured and compared to the adhesion parameter b obtained from the microhardness tests. The highest increase in adhesion was observed for BT with 5 wt. % of Mn-Al LDH on L3005 substrate, which was more than 15 times higher than the adhesion for the neat BT. The morphological segregation of composite adhesives after the contact with Al substrates was examined by optical microscopy and a higher compatibility of Mn-Al LDH particles with L3005 substrate was found. The methods used for the adhesion properties assessment suggested that the Mn-Al LDH was the best adhesion enhancer of the BT matrix for L3005 substrate containing a higher content of Mn and surface hydroxyl groups.
Collapse
|
15
|
da Silva Meirelles Dória Maia JN, Portela MB, Sanchez Candela DR, Neves ADA, Noronha-Filho JD, Mendes ADO, Barros MA, Moreira da Silva E. Fabrication and characterization of remineralizing dental composites containing calcium type pre-reacted glass-ionomer (PRG-Ca) fillers. Dent Mater 2021; 37:1325-1336. [PMID: 33962791 DOI: 10.1016/j.dental.2021.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/09/2021] [Accepted: 04/24/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To fabricate and characterize dental composites with calcium type pre-reacted glass-ionomer (PRG-Ca) fillers. METHODS PRG-Ca fillers were prepared by the reaction of calcium fluoroaluminosilicate glass with polyacrylic acid. Seven dental composites were produced from the same organic matrix (70/30wt% Bis-GMA/TEGDMA), with partial replacement of barium borosilicate (BaBSi) fillers (60wt%) by PRG-Ca fillers (wt%): E0 (0) - control, E1 (10), E2 (20), E3 (30), E4 (40), E5 (50) and E6 (60). Enamel remineralization was evaluated in caries-like enamel lesions induced by S. mutans biofilm using micro-CT. The following properties were characterized: degree of conversion (DC%), roughness (Ra), Knoop hardness (KHN), flexural strength (FS), flexural modulus (FM), water sorption (Wsp), water solubility (Wsl), and translucency (TP). Data were analyzed to one-way ANOVA and Tukey's HSD test (α=0.05). RESULTS All composites with PRG-Ca induced enamel remineralization. E0 and E1 presented similar and highest DC% than E2=E3=E4=E5=E6. Ra and KHN were not influenced by PRG-Ca fillers (p<0.05). The higher the content of PRG-Ca, the lower FS, FM and TP (p<0.05). Wsp increased linearly with the content of PRG-Ca fillers (p<0.05). E6 presented the highest Wsl (p<0.05), while the Wsl of the other composites were not different from each other (p>0.05). SIGNIFICANCE Incorporation of 10-40wt.% of PRG-Ca fillers endowed remineralizing potential to dental composites without jeopardizing the overall behavior of their physicochemical properties. Dental composites with PRG-Ca fillers seems to be a good alternative for reinforcing the enamel against caries development.
Collapse
Affiliation(s)
| | - Maristela Barbosa Portela
- Odontopediatric Division, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | | | - Aline de Almeida Neves
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Brazil; Department of Paediatric Dentistry, King's College London, London, UK
| | - Jaime Dutra Noronha-Filho
- Analitical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Amanda de Oliveira Mendes
- Analitical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Mariana Araújo Barros
- Analitical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Eduardo Moreira da Silva
- Analitical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Dai Q, Weir MD, Ruan J, Liu J, Gao J, Lynch CD, Oates TW, Li Y, Chang X, Xu HHK. Effect of co-precipitation plus spray-drying of nano-CaF 2 on mechanical and fluoride properties of nanocomposite. Dent Mater 2021; 37:1009-1019. [PMID: 33879343 DOI: 10.1016/j.dental.2021.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/20/2021] [Accepted: 03/28/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Fluoride (F)-releasing restoratives typically are either weak mechanically or release only low levels of F ions. The objectives of this study were to: (1) develop a novel photo-cured nanocomposite with strong mechanical properties and high levels of sustained F ion release via a two-step "co-precipitation + spray-drying" technique to synthesize CaF2 nanoparticles (nCaF2); and (2) investigate the effect of spray-drying treatment after co-precipitation of nCaF2 on mechanical properties and F ion release of composite. METHODS Two types of CaF2 particles were synthesized: A co-precipitation method yielded CaF2cp; "co-precipitation + spray-drying" yielded nCaF2cpsd. Composites were fabricated with fillers of: (1) 0% CaF2 + 70% glass; (2) 10% CaF2cp + 60% glass; (3) 15% CaF2cp + 55% glass; (4) 20% CaF2cp + 50% glass; (5) 10% nCaF2cpsd + 60% glass; (6) 15% nCaF2cpsd + 55% glass; and (7) 20% nCaF2cpsd + 50% glass. A commercial F-releasing nanocomposite served as control. RESULTS The nCaF2cpsd had much smaller particle size (median = 32 nm) and narrower distribution (22-57 nm) than CaF2cp (median = 5.25 μm, 162 nm-67 μm). The composite containing nCaF2cpsd had greater flowability, flexural strength, elastic modulus and hardness than CaF2cp composite and commercial control composite. At 84-day immersion in water, the nanocomposites containing 20% nCaF2cpsd had 65 times higher cumulative F release, and 77 times greater long-term F-release rate, than commercial control. CONCLUSIONS A novel two-step "co-precipitation + spray-drying" technique of synthesizing nCaF2 was developed. The photo-cured nanocomposite containing 20% nCaF2cpsd possessed strong mechanical properties and excellent long-term F-release ability, and hence is promising for dental restoration applications to inhibit secondary caries.
Collapse
Affiliation(s)
- Quan Dai
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21021, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21021, USA
| | - Jianping Ruan
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jin Liu
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21021, USA
| | - Jianghong Gao
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21021, USA
| | - Christopher D Lynch
- Restorative Dentistry, University Dental School and Hospital, University College Cork, Wilton, Cork, Ireland
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21021, USA
| | - Yuncong Li
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Xiaofeng Chang
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21021, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
17
|
Pavel OD, Stamate AE, Bacalum E, Cojocaru B, Zăvoianu R, Pârvulescu VI. Catalytic behavior of Li-Al-LDH prepared via mechanochemical and co-precipitation routes for cyanoethylation reaction. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Huang Y, Song B, Zhou X, Chen H, Wang H, Cheng L. Dental Restorative Materials for Elderly Populations. Polymers (Basel) 2021; 13:polym13050828. [PMID: 33800358 PMCID: PMC7962827 DOI: 10.3390/polym13050828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/26/2023] Open
Abstract
The incidence of dental caries, especially root caries, has risen in elderly populations in recent years. Specialized restorative materials are needed due to the specific site of root caries and the age-related changes in general and oral health in the elderly. Unfortunately, the restorative materials commonly used clinically cannot fully meet the requirements in this population. Specifically, the antibacterial, adhesive, remineralization, mechanical, and anti-aging properties of the materials need to be significantly improved for dental caries in the elderly. This review mainly discusses the strengths and weaknesses of currently available materials, including amalgam, glass ionomer cement, and light-cured composite resin, for root caries. It also reviews the studies on novel anti-caries materials divided into three groups, antimicrobial, remineralization, and self-healing materials, and explores their potential in the clinical use for caries in the elderly. Therefore, specific restorative materials for caries in the elderly, especially for root caries, need to be further developed and applied in clinical practice.
Collapse
Affiliation(s)
- Yuyao Huang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bingqing Song
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hui Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China;
| | - Haohao Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (H.W.); (L.C.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (H.W.); (L.C.)
| |
Collapse
|
19
|
Wang Y, Zhu M, Zhu XX. Functional fillers for dental resin composites. Acta Biomater 2021; 122:50-65. [PMID: 33290913 DOI: 10.1016/j.actbio.2020.12.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Dental resin composites (DRCs) are popular materials to repair caries. Although various types of DRCs with different characteristics have been developed, restoration failures still exist. Bulk fracture and secondary caries have been considered as main causes for the failure of composites restoration. To address these problems, various fillers with specific functions have been introduced and studied. Some fillers with specific morphologies such as whisker, fiber, and nanotube, have been used to increase the mechanical properties of DRCs, and other fillers releasing ions such as Ag+, Ca2+, and F-, have been used to inhibit the secondary caries. These functional fillers are helpful to improve the performances and lifespan of DRCs. In this article, we firstly introduce the composition and development of DRCs, then review and discuss the functional fillers classified according to their roles in the DRCs, finally give a summary on the current research and predict the trend of future development.
Collapse
Affiliation(s)
- Yazi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - X X Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
20
|
The synergistic effects of SrF 2 nanoparticles, YSZ nanoparticles, and poly-ε-l-lysin on physicomechanical, ion release, and antibacterial-cellular behavior of the flowable dental composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110592. [PMID: 32228986 DOI: 10.1016/j.msec.2019.110592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 12/15/2019] [Accepted: 12/21/2019] [Indexed: 11/23/2022]
Abstract
Resin-based pit-and-fissure sealants (flowable resin composites) were formulated using bisphenol-A-glycerolatedimethacrylate (Bis-GMA)-triethylene glycol dimethacrylate-(TEGDMA)-diurethanedimethacrylate (UDMA) mixed monomers and multiple fillers, including synthetic strontium fluoride (SrF2) nanoparticles as a fluoride-releasing and antibacterial agent, yttria-stabilized zirconia (YSZ) nanoparticles as an auxiliary filler, and poly-ε-l-lysin (ε-PL) as an auxiliary antibacterial agent. Based on the physical, mechanical and initial antibacterial properties, the formulated nano-sealant containing 5 wt% SrF2, 5 wt% YSZ and 0.5 wt% ε-PL was selected as the optimal specimen and examined for ion release and cytotoxicity. The results showed an average release rate of 0.87 μg·cm-2·day-1 in the aqueous medium (pH 6.9) and 1.58 μg·cm-2·day-1 in acidic medium (pH 4.0). The maximum cytotoxicity of 20% toward human bone marrow mesenchymal stem cells (hMSCs) was observed according to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) cytotoxicity assay and acridine orange staining test. A synergy between SrF2 nanoparticles and ε-PL exhibited a better antibacterial activity in terms of colony reduction compared to the other samples. However, the inclusion of SrF2 and ε-PL caused mechanically weakening of the sealants that was partly compensated by incorporation of YSZ nanoparticles (up to 10 wt%).
Collapse
|
21
|
Yao S, Li T, Zhou C, Weir MD, Melo MAS, Tay FR, Lynch CD, Imazato S, Wu J, Xu HH. Novel antibacterial and therapeutic dental polymeric composites with the capability to self-heal cracks and regain mechanical properties. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Influence of Filler Loading on the Mechanical Properties of Flowable Resin Composites. MATERIALS 2020; 13:ma13061477. [PMID: 32213949 PMCID: PMC7142558 DOI: 10.3390/ma13061477] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 11/17/2022]
Abstract
The aim of this study was to evaluate the correlation between the percent of inorganic filler by weight (wt. %) and by volume (vol. %) of 11 flowable resin composites (FRCs) and their mechanical properties. To establish the correlation, the quantity of inorganic filler was determined by combustion and shape/size analyzed by SEM images. The compressive strength (CS), flexural strength (FS), and flexural modulus (FM) were determined. The CS values were between 182.87-310.38 MPa, the FS values ranged between 59.59 and 96.95 MPa, and the FM values were between 2.34 and 6.23 GPa. The percentage of inorganic filler registered values situated between 52.25 and 69.64 wt. % and 35.35 and 53.50 vol. %. There was a very good correlation between CS, FS, and FM vs. the inorganic filler by wt. % and vol. %. (R2 = 0.8899–0.9483). The highest regression was obtained for the FM values vs. vol. %. SEM images of the tested FRCs showed hybrid inorganic filler for Filtek Supreme XT (A3) and StarFlow (A2) and a homogeneous type of inorganic filler for the other investigated materials. All of the FS values were above 50 MPa, the ISO 4049/2019 limit for FRCs.
Collapse
|
23
|
Yan Z, Wang C, Tang Y, Zhu Y, Cao Q, Yang T, Hu L. π-Conjugated molecules identified for reversible and visual detection of F - in aqueous: Effect of heterocycle unit on sensing performance. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117451. [PMID: 31404759 DOI: 10.1016/j.saa.2019.117451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/26/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
To illustrate the impact of molecular structure, especially heterocycle unit, on the sensing performance, two kinds of π-conjugated molecules containing aromatic heterocyclic (Dye 1) and aromatic ring (Dye 2) were identified and compared each other. Even with similar structures, they possessed quite different spectral and colorimetric responses to F-, Cl-, Br-, I-, NO3-, HSO4-, H2PO4-, ClO4- and CH3COO-, etc. The reason might result from the difference in withdraw-electron ability of aromatic and heterocyclic rings, which would lead to different acidity of active H in the target π-conjugated molecules. In acidic aqueous, Dye 1 expressed a reversible ratiometric-colorimetric response to F-, accompanying with a visual color change from bright yellow to purple, a nice linear range of 2.0-35.0 × 10-6 mol/L and a low detection limit of 1.60 × 10-7 mol/L. While Dye 2 did not react with any anion due to its weak acidity of active hydrogen. Under the optimized conditions, Dye 1 was successfully applied for colorimetric or naked-eye detection of F- in environmental water, tea and toothpaste samples with RSD ≤ 3.1%. The recognition mechanism for Dye 1 to F- was confirmed to be deprotonation one with a 1:1 binding stoichiometry.
Collapse
Affiliation(s)
- Zhengquan Yan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Cong Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yulian Tang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yanjie Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Qianying Cao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Tianran Yang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lei Hu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
24
|
Shear Bonding Strength and Thermal Cycling Effect of Fluoride Releasable/Rechargeable Orthodontic Adhesive Resins Containing LiAl-F Layered Double Hydroxide (LDH) Filler. MATERIALS 2019; 12:ma12193204. [PMID: 31574919 PMCID: PMC6804118 DOI: 10.3390/ma12193204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022]
Abstract
This study aims to investigate the shear bonding strength (SBS) and thermal cycling effect of orthodontic brackets bonded with fluoride release/rechargeable LiAl-F layered double hydroxide (LDH-F) contained dental orthodontic resin. 3% and 5% of LDH-F nanopowder were gently mixed to commercial resin-based adhesives Orthomite LC (LC, LC3, LC5) and Transbond XT (XT, XT3). A fluoroaluminosilicate modified resin adhesive Transbond color change (TC) was selected as a positive control. Fifteen brackets each group were bonded to bovine enamel and the SBS was tested with/without thermal cycling. The adhesive remnant index (ARI) was evaluated at 20× magnification. The fluoride-releasing/rechargeability and cytocompatibility were also evaluated. The SBS of LC, LC3, and LC5 were significantly higher than XT and TC. After thermal cycling, the SBS of LC, LC3, and LC5 did not decrease and was significantly higher than TC. The changes of ARI scores indicate that failure occurred not only cohesive but also semi-cohesive fracture. The 30 days accumulated daily fluoride release of LC3, LC5, and TC without recharge are higher than 300 μg/cm2. The LDH-F contained resin adhesive possesses higher SBS compared to positive control TC. Fluoride release and the rechargeable feature can be achieved for preventing enamel demineralization without cytotoxicity.
Collapse
|