1
|
Yang S, Zhao T, Liu X, Zhang H, Yang B, Chen Z. Design and Development of Infiltration Resins: From Base Monomer Structure to Resin Properties. Chem Asian J 2025; 20:e202401157. [PMID: 39477893 DOI: 10.1002/asia.202401157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Indexed: 11/20/2024]
Abstract
The resin infiltration concept is one of the most widely used minimally invasive restorative techniques in restorative dentistry with the most outstanding therapeutic effect, and it is also one of the key research directions in restorative dentistry. "Infiltration resin" is the specialty restorative material for the technology, which is the key factor to success. The specialized restorative material is commonly known as "infiltrant/infiltration resins" "resins infiltrant" "infiltrant" or "resins," which will be consistently referred to as "infiltration resins" throughout the article. The paper aims to provide a comprehensive overview of infiltration resins by introducing the development of their therapeutic mechanisms, basic components, current challenges, and future trends, Based on existing literature, we analyze and compare how changes in the base monomer's structure and ratio affect the effectiveness of infiltration resins, from the material's structure-effective relationship. After compiling the information, the existing solution strategies have been listed to offer substantial support and guidance for future research endeavors.
Collapse
Affiliation(s)
- Shuo Yang
- Key Laboratory of High-Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of HighPerformance Polymers, College of Chemistry, Jilin University, Xiuzheng Road 1788, Changchun, 130012, China
| | - Ting Zhao
- Department of Geriatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, 130012, China
| | - Xiaoqiu Liu
- Department of Geriatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, 130012, China
| | - Haibo Zhang
- Key Laboratory of High-Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of HighPerformance Polymers, College of Chemistry, Jilin University, Xiuzheng Road 1788, Changchun, 130012, China
| | - Bo Yang
- Department of Thoracic Surgery the First Hospital of, Jilin University, 71 Xinmin Street, Chaoyang, Changchun, Jilin, China
| | - Zheng Chen
- Key Laboratory of High-Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of HighPerformance Polymers, College of Chemistry, Jilin University, Xiuzheng Road 1788, Changchun, 130012, China
| |
Collapse
|
2
|
Han S, Li S, Fu X, Han S, Chen H, Zhang L, Wang J, Sun G. Research Progress of Flexible Piezoresistive Sensors Based on Polymer Porous Materials. ACS Sens 2024; 9:3848-3863. [PMID: 39046083 DOI: 10.1021/acssensors.4c00836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Flexible piezoresistive sensors are in high demand in areas such as wearable devices, electronic skin, and human-machine interfaces due to their advantageous features, including low power consumption, excellent bending stability, broad testing pressure range, and simple manufacturing technology. With the advancement of intelligent technology, higher requirements for the sensitivity, accuracy, response time, measurement range, and weather resistance of piezoresistive sensors are emerging. Due to the designability of polymer porous materials and conductive phases, and with more multivariate combinations, it is possible to achieve higher sensitivity and lower detection limits, which are more promising than traditional flexible sensor materials. Based on this, this work reviews recent advancements in research on flexible pressure sensors utilizing polymer porous materials. Furthermore, this review examines sensor performance optimization and development from the perspectives of three-dimensional porous flexible substrate regulation, sensing material selection and composite technology, and substrate and sensing material structure design.
Collapse
Affiliation(s)
- Song Han
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Sheng Li
- China Academy of Machinery Wuhan Research Institute of Materials Protection Company, Ltd., Wuhan 430030, People's Republic of China
| | - Xin Fu
- Wuhan Second Ship Design & Research Institute, Wuhan 430064, People's Republic of China
| | - Shihui Han
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Huanyu Chen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Liu Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Jun Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Gaohui Sun
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| |
Collapse
|
3
|
Hamdy TM. Effect of E-glass fibers addition on compressive strength, flexural strength, hardness, and solubility of glass ionomer based cement. BMC Oral Health 2024; 24:739. [PMID: 38937723 PMCID: PMC11210041 DOI: 10.1186/s12903-024-04447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND In dentistry, glass-ionomer cements (GICs) are extensively used for a range of applications. The unique properties of GIC include fluoride ion release and recharge, chemical bonding to the tooth's hard tissues, biocompatibility, a thermal expansion coefficient like that of enamel and dentin, and acceptable aesthetics. Their high solubility and poor mechanical qualities are among their limitations. E-glass fibers are generally utilized to reinforce the polymer matrix and are identified by their higher silica content. OBJECTIVES The purpose of the study was to assess the impact of adding (10 wt% and 20 wt%) silane-treated E-glass fibers to traditional GIC on its mechanical properties (compressive strength, flexural strength, and surface hardness) and solubility. METHODS The characterization of the E-glass fiber fillers was achieved by XRF, SEM, and PSD. The specimens were prepared by adding the E-glass fiber fillers to the traditional GIC at 10% and 20% by weight, forming two innovative groups, and compared with the unmodified GIC (control group). The physical properties (film thickness and initial setting time) were examined to confirm operability after mixing. The evaluation of the reinforced GIC was performed by assessing the compressive strength, flexural strength, hardness, and solubility (n = 10 specimens per test). A one-way ANOVA and Tukey tests were performed for statistical analysis (p ≤ 0.05). RESULTS The traditional GIC showed the least compressive strength, flexural strength, hardness, and highest solubility. While the GIC reinforced with 20 wt% E-glass fibers showed the highest compressive strength, flexural strength, hardness, and least solubility. Meanwhile, GIC reinforced with 10 wt% showed intermediate results (P ≤ 0.05). CONCLUSION Using 20 wt% E-glass fiber as a filler with the traditional GIC provides a strengthening effect and reduced solubility.
Collapse
Affiliation(s)
- Tamer M Hamdy
- Restorative and Dental Materials Department, Oral and Dental Research Institute, National Research Centre (NRC), Giza, Dokki, 12622, Egypt.
| |
Collapse
|
4
|
Fidalgo-Pereira R, Carvalho Ó, Catarino SO, Henriques B, Torres O, Braem A, Souza JCM. Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistry. Clin Oral Investig 2023; 27:5679-5693. [PMID: 37592003 PMCID: PMC10492747 DOI: 10.1007/s00784-023-05189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVES The aim of this in vitro study was to evaluate the light transmission through five different resin-matrix composites regarding the inorganic filler content. METHODS Resin-matrix composite disc-shaped specimens were prepared on glass molds. Three traditional resin-matrix composites contained inorganic fillers at 74, 80, and 89 wt. % while two flowable composites revealed 60 and 62.5 wt. % inorganic fillers. Light transmission through the resin-matrix composites was assessed using a spectrophotometer with an integrated monochromator before and after light curing for 10, 20, or 40s. Elastic modulus and nanohardness were evaluated through nanoindentation's tests, while Vicker's hardness was measured by micro-hardness assessment. Chemical analyses were performed by FTIR and EDS, while microstructural analysis was conducted by optical microscopy and scanning electron microscopy. Data were evaluated using two-way ANOVA and Tukey's test (p < 0.05). RESULTS After polymerization, optical transmittance increased for all specimens above 650-nm wavelength irradiation since higher light exposure time leads to increased light transmittance. At 20- or 40-s irradiation, similar light transmittance was recorded for resin composites with 60, 62, 74, or 78-80 wt. % inorganic fillers. The lowest light transmittance was recorded for a resin-matrix composite reinforced with 89 wt. % inorganic fillers. Thus, the size of inorganic fillers ranged from nano- up to micro-scale dimensions and the high content of micro-scale inorganic particles can change the light pathway and decrease the light transmittance through the materials. At 850-nm wavelength, the average ratio between polymerized and non-polymerized specimens increased by 1.6 times for the resin composite with 89 wt. % fillers, while the composites with 60 wt. % fillers revealed an increased ratio by 3.5 times higher than that recorded at 600-nm wavelength. High mean values of elastic modulus, nano-hardness, and micro-hardness were recorded for the resin-matrix composites with the highest inorganic content. CONCLUSIONS A high content of inorganic fillers at 89 wt.% decreased the light transmission through resin-matrix composites. However, certain types of fillers do not interfere on the light transmission, maintaining an optimal polymerization and the physical properties of the resin-matrix composites. CLINICAL SIGNIFICANCE The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization mode. As a consequence, the clinical performance of resin-matrix composites can be compromised, leading to variable physical properties and degradation.
Collapse
Affiliation(s)
- Rita Fidalgo-Pereira
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), 3504-505, Viseu, Portugal
- University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra PRD, Portugal
| | - Óscar Carvalho
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, 4800-058, Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, Guimarães, 4710-057, Braga, Portugal
| | - Susana O Catarino
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, 4800-058, Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, Guimarães, 4710-057, Braga, Portugal
| | - Bruno Henriques
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, 4800-058, Guimarães, Portugal
- LABBELS Associate Laboratory, University of Minho, Guimarães, 4710-057, Braga, Portugal
- Ceramic and Composite Materials Research Group (CERMAT), Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), SC, 88040-900, Florianopolis, Brazil
| | - Orlanda Torres
- Oral Pathology and Rehabilitation Research Unit (UNIPRO), University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra, Portugal
| | - Annabel Braem
- Department of Materials Engineering (MTM), Biomaterials and Tissue Engineering Research Group, KU Leuven, 3000, Leuven, Belgium
| | - Júlio C M Souza
- Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, 4800-058, Guimarães, Portugal.
- LABBELS Associate Laboratory, University of Minho, Guimarães, 4710-057, Braga, Portugal.
| |
Collapse
|
5
|
Pedreira PR, Damasceno JE, de Cerqueira GA, Souza AF, Aguiar FHB, Marchi GM. Radiopacity and physical properties evaluation of infiltrants with Barium and Ytterbium addition. Braz Dent J 2023; 34:93-106. [PMID: 37909646 PMCID: PMC10642274 DOI: 10.1590/0103-6440202305379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/23/2023] [Indexed: 11/03/2023] Open
Abstract
Radiopaque properties in the infiltrant should be interesting for clinicians to feel more confident to indicate this treatment. Thus, the aim of this study was to evaluate the effect of the incorporation of barium and ytterbium particles on the physical properties of resin infiltrants. Groups were divided according to the addition of ytterbium oxide (Y) alone (30 or 40%) or Y with barium (YB) (15/15% or 20/20% respectively) in the Icon commercial infiltrant and in the experimental infiltrant base. Digital radiography (n=5), Microradiography (n=5), Microtomography (n=3), degree of conversion (n=5), water sorption (n=16), solubility (n=16), contact angle (n=16), flexural strength (n=16), elastic modulus (n=16) and Energy dispersive X-ray Spectroscopy (n=10) were performed. Analyses were performed using the R program, with a significance level of 5%, and microradiography and Microtomography analyses were evaluated qualitatively. In groups with 30 or 40% of ytterbium, radiopacity was higher or equal to enamel. Microradiography and Microtomography appear to have more radiopacity in groups with 40% (Y). Among the groups with no particle addition, those of the experimental infiltrant presented a higher degree of conversion than those of Icon®. In most groups, there was solubility below the ISO-recommended levels. The addition of particles resulted in higher viscosity. Groups with Icon had higher flexural strength and elastic modulus than groups with experimental infiltrant. The addition of 40% (Y) improved polymerization, had low solubility, and had greater radiopacity than enamel, however negatively affected the viscosity increasing then. Experimental groups with the base showed a higher water sorption than Icon groups.
Collapse
Affiliation(s)
- Priscila Regis Pedreira
- Department of Restorative Dentistry, Piracicaba Dental School,
University of Campinas, Piracicaba, São Paulo, 13414-903, Brazil
| | - Janaina Emanuela Damasceno
- Department of Restorative Dentistry, Piracicaba Dental School,
University of Campinas, Piracicaba, São Paulo, 13414-903, Brazil
| | - Gabriela Alves de Cerqueira
- Department of Restorative Dentistry, Piracicaba Dental School,
University of Campinas, Piracicaba, São Paulo, 13414-903, Brazil
| | - Ana Ferreira Souza
- Department of Restorative Dentistry, Piracicaba Dental School,
University of Campinas, Piracicaba, São Paulo, 13414-903, Brazil
| | - Flávio Henrique Baggio Aguiar
- Department of Restorative Dentistry, Piracicaba Dental School,
University of Campinas, Piracicaba, São Paulo, 13414-903, Brazil
| | - Giselle Maria Marchi
- Department of Restorative Dentistry, Piracicaba Dental School,
University of Campinas, Piracicaba, São Paulo, 13414-903, Brazil
| |
Collapse
|
6
|
Villacorta A, Vela L, Morataya-Reyes M, Llorens-Chiralt R, Rubio L, Alaraby M, Marcos R, Hernández A. Titanium-doped PET nanoplastics of environmental origin as a true-to-life model of nanoplastic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163151. [PMID: 37011676 DOI: 10.1016/j.scitotenv.2023.163151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/25/2023] [Indexed: 05/27/2023]
Abstract
The increased presence of secondary micro/nanoplastics (MNPLs) in the environment requires urgent studies on their potentially hazardous effects on exposed organisms, including humans. In this context, it is essential to obtain representative MNPL samples for such purposes. In our study, we have obtained true-to-life NPLs resulting from the degradation, via sanding, of opaque PET bottles. Since these bottles contain titanium (TiO2NPs), the resulting MNPLs also contain embedded metal. The obtained PET(Ti)NPLs were extensively characterized from a physicochemical point of view, confirming their nanosized range and their hybrid composition. This is the first time these types of NPLs are obtained and characterized. The preliminary hazard studies show their easy internalization in different cell lines, without apparent general toxicity. The demonstration by confocal microscopy that the obtained NPLs contain Ti samples offers this material multiple advantages. Thus, they can be used in in vivo approaches to determine the fate of NPLs after exposure, escaping from the existing difficulties to follow up MNPLs in biological samples.
Collapse
Affiliation(s)
- Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Lourdes Vela
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Faculty of Health Sciences Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Michelle Morataya-Reyes
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Raquel Llorens-Chiralt
- AIMPLAS, Plastics Technological Centre, Gustave Eiffel, 4, 46980 Paterna, Valencia, Spain
| | - Laura Rubio
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Mohamed Alaraby
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Zoology Department, Faculty of Sciences, Sohag University, 82524 Sohag, Egypt
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
7
|
YEŞİL ACAR Z, TUNÇ KOÇYİĞİT M, ASİLTÜRK M. Investigation of the effect of matrix-interface formed with silane-based coupling agents on physico-chemical behavior and flow distance of dental composites. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
8
|
Albeshir EG, Alsahafi R, Albluwi R, Balhaddad AA, Mitwalli H, Oates TW, Hack GD, Sun J, Weir MD, Xu HHK. Low-Shrinkage Resin Matrices in Restorative Dentistry-Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2951. [PMID: 35454643 PMCID: PMC9029384 DOI: 10.3390/ma15082951] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023]
Abstract
Dimethacrylate-based resin composites restorations have become widely-used intraoral materials in daily dental practice. The increasing use of composites has greatly enhanced modern preventive and conservative dentistry. They have many superior features, especially esthetic properties, bondability, and elimination of mercury and galvanic currents. However, polymeric materials are highly susceptible to polymerization shrinkage and stresses that lead to microleakage, biofilm formation, secondary caries, and restoration loss. Several techniques have been investigated to minimize the side effects of these shrinkage stresses. The primary approach is through fabrications and modification of the resin matrices. Therefore, this review article focuses on the methods for testing the shrinkage, as well as formulations of resinous matrices available to reduce polymerization shrinkage and its associated stress. Furthermore, this article reviews recent cutting-edge developments on bioactive low-shrinkage-stress nanocomposites to effectively inhibit the growth and activities of cariogenic pathogens and enhance the remineralization process.
Collapse
Affiliation(s)
- Ebtehal G. Albeshir
- Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (E.G.A.); (R.A.)
- Department of Restorative Dentistry, King Abdul-Aziz Medical City, Ministiry of National Guard—Health Affairs, Riyadh 11426, Saudi Arabia;
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Ministiry of National Guard—Health Affairs, Riyadh 11426, Saudi Arabia
| | - Rashed Alsahafi
- Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (E.G.A.); (R.A.)
- Department of Restorative Dental Sciences, College of Dentistry, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Reem Albluwi
- Department of Restorative Dentistry, King Abdul-Aziz Medical City, Ministiry of National Guard—Health Affairs, Riyadh 11426, Saudi Arabia;
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Center, Ministiry of National Guard—Health Affairs, Riyadh 11426, Saudi Arabia
| | - Abdulrahman A. Balhaddad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Heba Mitwalli
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Thomas W. Oates
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.W.O.); (G.D.H.)
| | - Gary D. Hack
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.W.O.); (G.D.H.)
| | - Jirun Sun
- The Forsyth Institute, A Harvard School of Dental Medicine Affiliate, 245 First Street, Cambridge, MA 02142, USA
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.W.O.); (G.D.H.)
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.W.O.); (G.D.H.)
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Non-thermal plasma for surface treatment of inorganic fillers added to resin-based cements. Clin Oral Investig 2021; 26:2983-2991. [PMID: 34791551 DOI: 10.1007/s00784-021-04280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES This study aims to evaluate the effect of non-thermal plasma (NTP) surface treatment in two composite inorganic fillers and evaluate their impact on the chemical-mechanical properties and bond strength ability of experimental resin cements. MATERIALS AND METHODS Ytterbium fluoride (YF) and barium silicate glass (BS) were characterized and submitted to different surface treatments: non-thermal plasma (NTP); non-thermal plasma and 3-(trimethoxysilyl) propyl methacrylate silanization; and 3-(trimethoxysilyl) propyl methacrylate silanization. Untreated fillers were used as a control. The fillers were incorporated at 65wt% concentration into light-cured experimental resin cements (50wt% BisGMA; 25wt% UDMA; 25wt% TEGDMA; 1mol% CQ). The degree of conversion, the flexural strength, and the microshear bond strength (μSBS) were evaluated to characterize developed composites. RESULTS YF and BS were successfully cleaned with NTP treatment. Nor NTP neither the silanization affected the degree of conversion of resin cements. The NTP predicted an increase in YF-containing resin cements flexural strength, reducing the storage impact in these materials. NTP treatment did not affect the μSBS when applied to YF, while silanization was effective for BS-containing materials. CONCLUSION NTP treatment of inorganic particles was possible and was shown to reduce the amount of organic contamination of the particle surface. YF surface treatment with NTP can be an alternative to improve the organic/inorganic interaction in resin composites to obtain materials with better mechanical properties. CLINICAL RELEVANCE Surface cleaning with NTP may be an alternative for particle surface cleaning to enhance organic-inorganic interaction in dental composites resulting in improved mechanical strength of experimental resin cements.
Collapse
|
10
|
A Review on Filament Materials for Fused Filament Fabrication. JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING 2021. [DOI: 10.3390/jmmp5030069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fused filament fabrication (FFF) is one of the most popular additive manufacturing (AM) processes that utilize thermoplastic polymers to produce three-dimensional (3D) geometry products. The FFF filament materials have a significant role in determining the properties of the final part produced, such as mechanical properties, thermal conductivity, and electrical conductivity. This article intensively reviews the state-of-the-art materials for FFF filaments. To date, there are many different types of FFF filament materials that have been developed. The filament materials range from pure thermoplastics to composites, bioplastics, and composites of bioplastics. Different types of reinforcements such as particles, fibers, and nanoparticles are incorporated into the composite filaments to improve the FFF build part properties. The performance, limitations, and opportunities of a specific type of FFF filament will be discussed. Additionally, the challenges and requirements for filament production from different materials will be evaluated. In addition, to provide a concise review of fundamental knowledge about the FFF filament, this article will also highlight potential research directions to stimulate future filament development. Finally, the importance and scopes of using bioplastics and their composites for developing eco-friendly filaments will be introduced.
Collapse
|
11
|
Cazan C, Enesca A, Andronic L. Synergic Effect of TiO 2 Filler on the Mechanical Properties of Polymer Nanocomposites. Polymers (Basel) 2021; 13:polym13122017. [PMID: 34203085 PMCID: PMC8234789 DOI: 10.3390/polym13122017] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022] Open
Abstract
Nanocomposites with polymer matrix offer excellent opportunities to explore new functionalities beyond those of conventional materials. TiO2, as a reinforcement agent in polymeric nanocomposites, is a viable strategy that significantly enhanced their mechanical properties. The size of the filler plays an essential role in determining the mechanical properties of the nanocomposite. A defining feature of polymer nanocomposites is that the small size of the fillers leads to an increase in the interfacial area compared to traditional composites. The interfacial area generates a significant volume fraction of interfacial polymer, with properties different from the bulk polymer even at low loadings of the nanofiller. This review aims to provide specific guidelines on the correlations between the structures of TiO2 nanocomposites with polymeric matrix and their mechanical properties. The correlations will be established and explained based on interfaces realized between the polymer matrix and inorganic filler. The paper focuses on the influence of the composition parameters (type of polymeric matrix, TiO2 filler with surface modified/unmodified, additives) and technological parameters (processing methods, temperature, time, pressure) on the mechanical strength of TiO2 nanocomposites with the polymeric matrix.
Collapse
Affiliation(s)
- Cristina Cazan
- Renewable Energy Systems and Recycling Research Center, Transilvania University of Brasov, 500036 Brasov, Romania
- Correspondence:
| | - Alexandru Enesca
- Product Design, Mechatronics and Environment Department, Transilvania University of Brasov, 500036 Brasov, Romania; (A.E.); (L.A.)
| | - Luminita Andronic
- Product Design, Mechatronics and Environment Department, Transilvania University of Brasov, 500036 Brasov, Romania; (A.E.); (L.A.)
| |
Collapse
|
12
|
Balbinot GS, Leitune VCB, Ogliari FA, Collares FM. Niobium silicate particles promote in vitro mineral deposition on dental adhesive resins. J Dent 2020; 101:103449. [PMID: 32777240 DOI: 10.1016/j.jdent.2020.103449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE This study aims to analyze the addition of niobium silicate particles to dental adhesive resins and evaluate its physicomechanical and biological properties. METHODS The SiNb particles were produced by the sol-gel route and presented a mean particle size of 2.1 μm and a specific surface area of 616,96m2/g. An experimental adhesive resin was formulated with 66 wt% Bisphenol A-Glycidyl Methacrylate and 33 wt% Hydroxyethyl methacrylate with diphenyl(2,4,6-trimethyl benzoyl)phosphine oxide as the photoinitiator. The SiNb particles were incorporated into the adhesive resins in 1 wt% (SiNb1%) and 2 wt% (SiNb2%) concentration. A control group (SiNb0%) without the addition of particles was used. The developed adhesives were evaluated by their polymerization kinetics, refractive index, softening in solvent, cytotoxicity, mineral deposition, ultimate tensile strength, and micro shear bond strength. RESULTS The refractive index range was increased by the addition of niobium silicate particles. No statistically significant difference was found between groups in the degree of conversion,.softening in solvent analysis, cytotoxicity and ultimate tensile strength. The deposition of minerals increased after immersion of specimens in SBF after 14 days on the SiNb2%. The SiNb2% group showed high micro shear bond strength values, reaching 33.87 MPa. CONCLUSION In the present study, the addition of 2 wt% of niobium silicate into dental adhesive resins promoted the mineral deposition with increased bond strength without affecting other material properties. CLINICAL SIGNIFICANCE Bioactive fillers must maintain the physical-chemical properties of dental adhesives, guaranteeing their clinical performance. Niobium silicate particles could promote the remineralization of dentin hard tissues without compromising the physico-mechanical properties on these materials.
Collapse
Affiliation(s)
- G S Balbinot
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - V C B Leitune
- Yller Biomaterials SA- Straumann Group, Pelotas, RS, Brazil.
| | - F A Ogliari
- Yller Biomaterials SA- Straumann Group, Pelotas, RS, Brazil.
| | - F M Collares
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Tammaro L, Di Salle A, Calarco A, De Luca I, Riccitiello F, Peluso G, Vittoria V, Sorrentino A. Multifunctional Bioactive Resin for Dental Restorative Materials. Polymers (Basel) 2020; 12:E332. [PMID: 32033310 PMCID: PMC7077377 DOI: 10.3390/polym12020332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 11/16/2022] Open
Abstract
Resin-based composites are widely used as dental restorative materials due to their excellent properties. They must have high modulus, high hardness, and be chemically inert while minimizing moisture uptake. To fulfill these higher standard prerequisites and properties, continuous improvements in each of their components are required. This study develops novel composites with multiple biofunctions. Light-cured Bis-GMA/TEGDMA dental resin (RK)/layered double hydroxide intercalated with fluoride ions (LDH-F)/calcium bentonite (Bt) hybrid composites were prepared. The loading ratio of LDH-F to Bt was varied, ranging from 2.5/2.5 to 10/10 parts per hundred RK and structural, mechanical, and biological properties were studied. The incorporation of even small mass fractions (e.g., 2.5 wt % of LDH-F and 2.5 wt % of Bt) in RK dental resin significantly improved the mechanical properties of the pristine resin. The synthetized materials showed antibacterial and antibiofilm effects against three bacterial strains isolated from healthy volunteers' saliva (Streptococcus spp., Bacteroides fragilis, and Staphylococcus epidermidis) without affecting its ability to induce dental pulp stem cells differentiation into odontoblast-like cells. The capability to balance between the antibiofilm activity and dental pulp stem cells differentiation in addition with improved mechanical properties make these materials a promising strategy in preventive and restorative dentistry.
Collapse
Affiliation(s)
- Loredana Tammaro
- Nanomaterials and Devices Laboratory (SSPT-PROMAS-NANO), Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, P.le E. Fermi 1, 80055 Portici (Na), Italy
| | - Anna Di Salle
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, via P. Castellino 111, 80131 Napoli, Italy; (A.D.S.); (G.P.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, via P. Castellino 111, 80131 Napoli, Italy; (A.D.S.); (G.P.)
| | - Ilenia De Luca
- Elleva Pharma s.r.l., via P. Castellino 111, 80131 Napoli, Italy;
| | - Francesco Riccitiello
- Department of Restorative Dentistry, University of Naples Federico II, via S. Pansini 5, 80131 Napoli, Italy;
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, via P. Castellino 111, 80131 Napoli, Italy; (A.D.S.); (G.P.)
| | | | - Andrea Sorrentino
- Institute for Polymer, Composites and Biomaterials (IPCB)—CNR, P.le E. Fermi 1, 80055 Portici (Na), Italy;
| |
Collapse
|
14
|
Abstract
As a new type of anticorrosive material, basalt flakes (BFs) have been widely used in the marine industry due to their good acid and alkali corrosion resistance and dispersion stability. In this work, the effect of carbon nanotubes (CNTs) addition on properties improvement of basalt flake epoxy resin (CNT-BF/EP) coating was studied. Firstly, 0–0.7 wt.% acidified CNTs was used to modify the surface of the BFs and the CNT-BF/EP coating was successfully prepared. Experimental results showed that the performance of the interfacial compatibility, the tensile strength, and acid and alkali resistance of the CNT-BF/EP coating were significantly improved with the addition of the CNTs. Particularly, the CNT-BF/EP coating achieved the best comprehensive properties (tensile strength increased to 30.3 MPa, surface weight loss rate of only 1.0 wt.% in the acid environment for 480 h, and water absorption of only 1.1 wt.% after 480 h) when the CNTs addition reached 0.5 wt.%. This work suggests a feasible way to enhance the mechanical properties and chemical durability of the basalt flakes coating.
Collapse
|