1
|
Kaptan Usul S, Aslan A, Lüleci HB, Ergüden B. Effects of Hexagonal Boron Nitride and Mesoporous Silica Nanoparticles on the Morphology, Mechanical Properties and Antimicrobial Activity of Dental Composites. J CLUST SCI 2024; 35:2293-2309. [DOI: 10.1007/s10876-024-02658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/21/2024] [Indexed: 07/26/2024]
Abstract
AbstractHexagonal boron nitride (HBN), an artificial material with unique properties, is used in many industries. This article focuses on the extent to which hexagonal boron nitride and silica nanoparticles (MSN) affect the physicochemical and mechanical properties and antimicrobial activity of prepared dental composites. In this study, HBN, and MSN were used as additives in dental composites. 5% and 10% by weight of HBN are added to the structure of the composite materials. FTIR analysis were performed to determine the components of the produced boron nitride powders, hexagonal boron nitride-containing composites, and filling material applications. The structural and microstructural properties of dental composites have been extensively characterized using X-ray diffractometry (XRD). Surface morphology and distributions of nano boron nitride were determined by scanning electron microscopy (SEM)-EDS. In addition, the solubility of dental composites in water and their stability in water and chemical solution (Fenton) were determined by three repetitive experiments. Finally, the antimicrobial activity of dental composites was detected by using Minimum Inhibitory Concentration (MIC) measurement, as well as Minimum Fungicidal Concentration (MFC) method against yeast strain Saccharomyces cerevisiae, and Minimum Bactericidal Concentration (MBC) method against bacteria strains, Staphylococcus aureus and Escherichia coli. Since the HMP series have better antimicrobial activity than the HP series, they are more suitable for preventing dental caries and for long-term use of dental composites. In addition, when HMP and HP series added to the composite are compared, HMP-containing dental composites have better physicochemical and mechanical properties and therefore have a high potential for commercialization.
Collapse
|
2
|
Liang X, Yu B, Ye L, Lin D, Zhang W, Zhong HJ, He J. Recent Advances in Quaternary Ammonium Monomers for Dental Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:345. [PMID: 38255513 PMCID: PMC10820831 DOI: 10.3390/ma17020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Resin-based dental materials have been one of the ideal choices among various materials in the treatment of dental caries. However, resin-based dental materials still have some drawbacks, such as the lack of inherent antibacterial activity. Extensive research has been conducted on the use of novel quaternary ammonium monomers (QAMs) to impart antibacterial activity to dental materials. This review provides a comprehensive overview of the recent advances in quaternary ammonium monomers (QAMs) for dental applications. The current progress and limitations of QAMs are discussed based on the evolution of their structures. The functional diversification and enhancement of QAMs are presented. QAMs have the potential to provide long-term antibacterial activity in dental resin composites, thereby prolonging their service life. However, there is a need to balance antibacterial performance with other material properties and the potential impact on the oral microbiome and general health. Finally, the necessity for further scientific progress in the development of novel quaternary ammonium monomers and the optimization of dental resin formulations is emphasized.
Collapse
Affiliation(s)
- Xiaoxu Liang
- Foundation Department, Guangzhou Maritime University, Guangzhou 510725, China;
| | - Biao Yu
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Liuqi Ye
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Danlei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Wen Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Hai-Jing Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; (L.Y.); (D.L.); (W.Z.)
| | - Jingwei He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Chrószcz-Porębska MW, Barszczewska-Rybarek IM, Kazek-Kęsik A, Ślęzak-Prochazka I. Cytotoxicity and Microbiological Properties of Copolymers Comprising Quaternary Ammonium Urethane-Dimethacrylates with Bisphenol A Glycerolate Dimethacrylate and Triethylene Glycol Dimethacrylate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103855. [PMID: 37241482 DOI: 10.3390/ma16103855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Using dental composite restorative materials with a copolymeric matrix chemically modified towards bioactive properties can help fight secondary caries. In this study, copolymers of 40 wt.% bisphenol A glycerolate dimethacrylate, 40 wt.% quaternary ammonium urethane-dimethacrylates (QAUDMA-m, where m represents 8, 10, 12, 14, 16 and 18 carbon atoms in the N-alkyl substituent), and 20 wt.% triethylene glycol dimethacrylate (BG:QAm:TEGs) were tested for (i) cytotoxicity on the L929 mouse fibroblast cell line; (ii) fungal adhesion, fungal growth inhibition zone, and fungicidal activity against C. albicans; and (iii) bactericidal activity against S. aureus and E. coli. BG:QAm:TEGs had no cytotoxic effects on L929 mouse fibroblasts because the reduction of cell viability was less than 30% compared to the control. BG:QAm:TEGs also showed antifungal activity. The number of fungal colonies on their surfaces depended on the water contact angle (WCA). The higher the WCA, the greater the scale of fungal adhesion. The fungal growth inhibition zone depended on the concentration of QA groups (xQA). The lower the xQA, the lower the inhibition zone. In addition, 25 mg/mL BG:QAm:TEGs suspensions in culture media showed fungicidal and bactericidal effects. In conclusion, BG:QAm:TEGs can be recognized as antimicrobial biomaterials with negligible biological patient risk.
Collapse
Affiliation(s)
- Marta W Chrószcz-Porębska
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland
| | - Izabela M Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6 Str., 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland
| | - Izabella Ślęzak-Prochazka
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16 Str., 44-100 Gliwice, Poland
| |
Collapse
|
4
|
Bettencourt AF, Costa J, Ribeiro IAC, Gonçalves L, Arias-Moliz MT, Dias JR, Franco M, Alves NM, Portugal J, Neves CB. Development of a chlorhexidine delivery system based on dental reline acrylic resins. Int J Pharm 2023; 631:122470. [PMID: 36516927 DOI: 10.1016/j.ijpharm.2022.122470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
The high recurrence rate of common denture stomatitis after antifungal treatment is still concerning. This condition is caused by low patient compliance and incomplete local elimination of the main etiological factor - Candida albicans, often associated with other microorganisms, such as Streptococcus species. Impregnating denture materials with antimicrobials for local delivery is a strategy that can overcome the side effects and improve the efficacy of conventional treatments (topical and/or systemic). In this work, we describe the development of three hard autopolymerizing reline acrylic resins (Kooliner, Ufi Gel Hard, and Probase Cold) loaded with different percentages of chlorhexidine (CHX). The novel formulations were characterized based on their antimicrobial activity, mechanical, morphological and surface properties, in-vitro drug release profiles, and cytotoxicity. The addition of CHX in all resins did not change their chemical and mechanical structure. Among all the tested formulations, Probase Cold loaded with 5 wt% CHX showed the most promising results in terms of antimicrobial activity and lack of serious detrimental mechanical, morphological, surface, and biological properties.
Collapse
Affiliation(s)
- Ana F Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Joana Costa
- Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| | - Isabel A C Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | | | - Juliana R Dias
- Center for Rapid and Sustainable Product Development (CDRsp), Polytechnic Institute of Leiria, 2030-028 Marinha Grande, Portugal
| | - Margarida Franco
- Center for Rapid and Sustainable Product Development (CDRsp), Polytechnic Institute of Leiria, 2030-028 Marinha Grande, Portugal
| | - Nuno M Alves
- Center for Rapid and Sustainable Product Development (CDRsp), Polytechnic Institute of Leiria, 2030-028 Marinha Grande, Portugal
| | - Jaime Portugal
- Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| | - Cristina B Neves
- Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal.
| |
Collapse
|
5
|
Biodegradation of Dental Resin-Based Composite—A Potential Factor Affecting the Bonding Effect: A Narrative Review. Biomedicines 2022; 10:biomedicines10092313. [PMID: 36140414 PMCID: PMC9496159 DOI: 10.3390/biomedicines10092313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
In recent years, although resin composite has played an important role in the restoration of tooth defects, it still has several disadvantages, including being biodegraded by saliva, bacteria and other enzymes in the oral cavity, which may result in repair failure. This factor is not conducive to the long-term survival of the prosthesis in the mouth. In this article, we review the causes, influencing factors and prevention methods of resin biodegradation. Biodegradation is mainly caused by esterase in saliva and bacteria, which breaks the ester bond in resin and causes the release of monomers. The mechanical properties of the prosthesis can then be affected. Meanwhile, cathepsin and MMPs are activated on the bonding surface, which may decompose the dentin collagen. In addition, neutrophils and residual water on the bonding surface can also aggravate biodegradation. Currently, the primary methods to prevent biodegradation involve adding antibacterial agents to resin, inhibiting the activity of MMPs and enhancing the crosslinking of collagen fibers. All of the above indicates that in the preparation and adhesion of resin materials, attention should be paid to the influence of biodegradation to improve the prosthesis’s service life in the complex environment of the oral cavity.
Collapse
|
6
|
Kaptan Usul S, Aslan A, Lüleci HB, Ergüden B, Çöpoğlu MT, Oflaz H, Soydan AM, Özçimen D. Investigation of antimicrobial and mechanical effects of functional nanoparticles in novel dental resin composites. J Dent 2022; 123:104180. [PMID: 35691455 DOI: 10.1016/j.jdent.2022.104180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Imidazole and benzimidazole derivatives have recently attracted attention as remarkable materials due to their advantages in chemistry, pharmacology, and biomaterials. This article focuses on dental composites with azole functional groups incorporated to affect their physicochemical and mechanical properties and antibacterial activity. METHODS Dental composites were fabricated by embedding the functionalized imidazole and benzimidazole nanoparticles into a Bis-GMA/TEGDMA matrix to form the imidazole and benzimidazole dental composites series (I and B). The material was produced through hand blending of the monomer (50:50, wt%), filler (0-30, wt%), and initiator combination (CQ/EDMAB:0.8:1.6, wt%), and LED light-curing unit for 60 s. RESULTS Using various characterization techniques, I and B series were validated. The dental composites' approximate solubility and sorption significances were evaluated by conducting experiments on specific dental composite formulations. Fenton reaction test was performed to determine the chemical stability of the dental composites. The mechanical properties of the dental composites were investigated. Finally, by testing cell growth in the presence of composites, their antibacterial activities were determined. CONCLUSIONS In this study, it was observed that the mechanical, physiochemical, and antibacterial properties of the functional azole-containing nanoparticles were positively improved by adding them to the structure of dental composites. These experimental results paved the way for the synthesized materials to be used in industrial applications. CLINICAL SIGNIFICANCE Since the chemical, mechanical, and antimicrobial properties of dental composites containing 10% imidazole and benzimidazole functional nanoparticles are far superior, they constitute an excellent alternative for preventing dental caries and long-term use of dental composites.
Collapse
Affiliation(s)
- Sedef Kaptan Usul
- Bioengineering Department, Gebze Technical University, Kocaeli 41400, Turkey.
| | - Ayşe Aslan
- Bioengineering Department, Gebze Technical University, Kocaeli 41400, Turkey.
| | - Hatice Büşra Lüleci
- Bioengineering Department, Gebze Technical University, Kocaeli 41400, Turkey.
| | - Bengü Ergüden
- Bioengineering Department, Gebze Technical University, Kocaeli 41400, Turkey.
| | | | - Hakan Oflaz
- Bioengineering Department, Gebze Technical University, Kocaeli 41400, Turkey.
| | - Ali Murat Soydan
- Institute of Energy Technologies, Gebze Technical University, Kocaeli 41400, Turkey.
| | - Didem Özçimen
- Bioengineering Department, Yıldız Technical University, Istanbul 34349, Turkey.
| |
Collapse
|
7
|
Sun Q, Zhang L, Bai R, Zhuang Z, Zhang Y, Yu T, Peng L, Xin T, Chen S, Han B. Recent Progress in Antimicrobial Strategies for Resin-Based Restoratives. Polymers (Basel) 2021; 13:1590. [PMID: 34069312 PMCID: PMC8156482 DOI: 10.3390/polym13101590] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Repairing tooth defects with dental resin composites is currently the most commonly used method due to their tooth-colored esthetics and photocuring properties. However, the higher than desirable failure rate and moderate service life are the biggest challenges the composites currently face. Secondary caries is one of the most common reasons leading to repair failure. Therefore, many attempts have been carried out on the development of a new generation of antimicrobial and therapeutic dental polymer composite materials to inhibit dental caries and prolong the lifespan of restorations. These new antimicrobial materials can inhibit the formation of biofilms, reduce acid production from bacteria and the occurrence of secondary caries. These results are encouraging and open the doors to future clinical studies on the therapeutic value of antimicrobial dental resin-based restoratives. However, antimicrobial resins still face challenges such as biocompatibility, drug resistance and uncontrolled release of antimicrobial agents. In the future, we should focus on the development of more efficient, durable and smart antimicrobial dental resins. This article focuses on the most recent 5 years of research, reviews the current antimicrobial strategies of composite resins, and introduces representative antimicrobial agents and their antimicrobial mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.S.); (L.Z.); (R.B.); (Z.Z.); (Y.Z.); (L.P.); (T.X.)
| | | | | | - Si Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.S.); (L.Z.); (R.B.); (Z.Z.); (Y.Z.); (L.P.); (T.X.)
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.S.); (L.Z.); (R.B.); (Z.Z.); (Y.Z.); (L.P.); (T.X.)
| |
Collapse
|