1
|
Chang JZC, Hsu JT, Li MJ, Lin HY, Sun J, Tsou NT, Sun JS. Optimizing dental implant design: Structure, strength, and bone ingrowth. J Dent Sci 2025; 20:1016-1026. [PMID: 40224102 PMCID: PMC11993016 DOI: 10.1016/j.jds.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 11/24/2024] [Indexed: 04/15/2025] Open
Abstract
Background/purpose Replacing missing teeth with implant-supported prostheses is a common practice; however, function-induced early bone loss may exacerbate peri-implantitis. Identifying factors that influence marginal bone loss is crucial. This study used finite element (FE) simulation and in-vitro analysis to evaluate design concepts and their effects on stresses and strains in dental implants and surrounding bone. Materials and methods Five implant designs were analyzed: (1) full solid, (2) upper porous, (3) lower porous, (4) lower porous: upper half, and (5) lower porous: lower half. The study included stability measurements, three-dimensional FE modeling, in-vitro mechanical testing, and simulations of long-term bone remodeling. Results The full-solid design showed the highest stress tolerance, followed by the lower porous and upper porous designs. Stress concentration was higher with oblique forces. The upper porous design favored bone strain distribution but exhibited permanent deformation beyond 350 N. Lower porous implants demonstrated similar strength to the full solid but superior marginal bone growth. Conclusion Within the scope of this study, the following conclusions were drawn: (1) A well-designed porous structure enhances post-implantation bone growth; (2) An upper porous design facilitates bone ingrowth but exhibits reduced strength under stress; (3) Lowering porosity adversely affects bone regeneration.
Collapse
Affiliation(s)
- Jenny Zwei-Chieng Chang
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jui-Ting Hsu
- School of Dentistry, China Medical University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- School of Dentistry, China Medical University and Hospital, Taichung, Taiwan
| | - Ming-Jun Li
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hung-Ying Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jason Sun
- Carmel Catholic High School, One Carmel Parkway, Mundelein, IL, USA
| | - Nien-Ti Tsou
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jui-Sheng Sun
- Department of Orthopedic Surgery, Landseed International Hospital, Taoyuan, Taiwan
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Wei H, Huang S, Liu Y, Li D. Molding Quality and Biological Evaluation of a Two-Stage Titanium Alloy Dental Implant Based on Combined 3D Printing and Subtracting Manufacturing. ACS OMEGA 2024; 9:51591-51603. [PMID: 39758616 PMCID: PMC11696423 DOI: 10.1021/acsomega.4c09131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/16/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
Metal 3D printing has been used in the manufacturing of dental implants. Its technical advantages include high material utilization and the capacity to form arbitrarily complex structures. However, 3D printing alone is insufficient for manufacturing two-stage titanium implants due to the limited precision in printing titanium alloy parts. In this study, 3D printing was employed to create the implant structure, subsequently complemented by mechanical processing to refine the implant abutment connection and neck. Additionally, the mechanical properties of 3D-printed titanium alloy implants were evaluated through tensile and dynamic fatigue testing. The MTT assay was employed to assess the cytotoxicity of 3D-printed titanium alloy dental implants. The impact of bone union and osteogenesis from 3D-printed titanium alloy dental implants was investigated through in vivo experimentation. The results demonstrated that combining 3D printing with subsequent machining constitutes a viable method for the manufacture of two-stage titanium dental implants. Test results for mechanical properties indicated that heat-treated 3D-printed titanium alloy dental implants possess significant tensile strength and fatigue resistance and are capable of withstanding the robust chewing forces in the oral cavity. In vitro findings revealed that sandblasted and acid-etched 3D-printed titanium alloy exhibited negligible cytotoxicity, with osteoblast differentiation of hMSCs being more pronounced compared with the control group. In vivo studies indicated that no significant differences were observed in bone volume fraction, bone-implant contact rate, and unscrewing torque between 3D-printed titanium alloy dental implants and commercial SLA surface implants at both 1 and 3 months postimplantation.
Collapse
Affiliation(s)
| | | | - Yi Liu
- State Key Laboratory
of Oral
& Maxillofacial Reconstruction and Regeneration & National
Clinical Research Center for Oral Diseases & Shaanxi Engineering
Research Center for Dental Materials and Advanced Manufacture, Department
of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, Shaanxi, P. R. China
| | - Dehua Li
- State Key Laboratory
of Oral
& Maxillofacial Reconstruction and Regeneration & National
Clinical Research Center for Oral Diseases & Shaanxi Engineering
Research Center for Dental Materials and Advanced Manufacture, Department
of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, Shaanxi, P. R. China
| |
Collapse
|
3
|
Hu Y, Chen X, Chu Z, Tian Q, Luo L, Gan Z, Zhong J, Yuan Z, Zhu B, Dong W. Micro-Computed Tomography Analysis and Histological Observation of the Screw-Bone Interface of Novel Porous Scaffold Core Pedicle Screws and Hollow Lateral Hole Pedicle Screws: A Comparative Study in Bama Pigs. World Neurosurg 2024; 190:e315-e322. [PMID: 39059721 DOI: 10.1016/j.wneu.2024.07.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE Screw loosening is a common complication of pedicle screw internal fixation surgery. This study aimed to investigate whether the application of a porous scaffold structure can increase the contact area between screws and bone tissue by comparing the bone ingrowth and screw-bone interface of porous scaffold core pedicle screws (PSCPSs) and hollow lateral hole pedicle screws (HLHPSs) in the lumbar spine of Bama pigs. METHODS Sixteen pedicle screws of both types were implanted into the bilateral pedicles of the L1-4 vertebrae of 2 Bama pigs. All Bama pigs were sacrificed and the lumbar spine was freed into individual vertebrae at 16 weeks postoperatively. After the vertebrae were made into screw-centered specimens, micro-computed tomography analysis and histological observation were performed to assess the screw-bone interface and bone growth around and within the screws. RESULTS We found that the bone condition around PSCPSs and HLHPSs did not show significant differences on micro-computed tomography three-dimensional reconstruction images. CT transverse views showed different bone growth inside the 2 screws. In PSCPSs, bone tissue was seen to fill the internal pores and was evenly distributed around each strut. Inside HLHPSs, bone growth was confined to 1 side of the screw and did not fill the entire cavity. Osteometric analysis showed that bone volume fraction and trabecular number, the parameters representing bone mass, were higher in PSCPSs than in HLHPSs. These differences were not statistically significant (P > 0.05). Histological observations visualized that the osseointegration within PSCPSs was superior to that of HLHPSs, and the tight integration of bone tissue with the porous scaffold resulted in a larger screw-bone integration area in PSCPSs than in HLHPSs. CONCLUSIONS Compared with HLHPSs, PSCPSs possessing a porous scaffold core could promote bone ingrowth and osseointegration, resulting in an effective enhancement of the combined area of the screw-bone interface.
Collapse
Affiliation(s)
- Yong Hu
- Department of Spine Surgery, Ningbo No. 6 Hospital of Ningbo University, Ningbo, China.
| | - Xijiong Chen
- Health Science Center, Ningbo University, Ningbo, China
| | - Zhentao Chu
- Health Science Center, Ningbo University, Ningbo, China
| | - Quanliang Tian
- Department of Spine Surgery, Qianxinan Autonomous Prefecture Hospital of TCM, Xingyi, China
| | - Linwei Luo
- Health Science Center, Ningbo University, Ningbo, China
| | - Zhiwei Gan
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianbin Zhong
- Department of Spine Surgery, Ningbo No. 6 Hospital of Ningbo University, Ningbo, China
| | - Zhenshan Yuan
- Department of Spine Surgery, Ningbo No. 6 Hospital of Ningbo University, Ningbo, China
| | - Bingke Zhu
- Department of Spine Surgery, Ningbo No. 6 Hospital of Ningbo University, Ningbo, China
| | - Weixin Dong
- Department of Spine Surgery, Ningbo No. 6 Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Binobaid A, Guner A, Camilleri J, Jiménez A, Essa K. A 3D printed ultra-short dental implant based on lattice structures and ZIRCONIA/Ca 2SiO 4 combination. J Mech Behav Biomed Mater 2024; 155:106559. [PMID: 38657285 DOI: 10.1016/j.jmbbm.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Additive Manufacturing (AM) enables the generation of complex geometries and controlled internal cavities that are so interesting for the biomedical industry due to the benefits they provide in terms of osseointegration and bone growth. These technologies enable the manufacturing of the so-called lattice structures that are cells with different geometries and internal pores joint together for the formation of scaffold-type structures. In this context, the present paper analyses the feasibility of using diamond-type lattice structures and topology optimisation for the re-design of a dental implant. Concretely, a new ultra-short implant design is proposed in this work. For the manufacturing of the implant, digital light processing additive manufacturing technique technology is considered. The implant was made out of Nano-zirconia and Nano-Calcium Silicate as an alternative material to the more common Ti6Al4V. This material combination was selected due to the properties of the calcium-silicate that enhance bone ingrowth. The influence of different material combination ratios and lattice pore sizes were analysed by means of FEM simulation. For those simulations, a bio-material bone-nanozirconia model was considered that represents the final status after the bone is integrated in the implant. Results shows that the mechanical properties of the biocompatible composite employed were suitable for dental implant applications in dentistry. Based on the obtained results it was seen that those designs with 400 μm and 500 μm pore sizes showed best performance and led to the required factor of safety.
Collapse
Affiliation(s)
- Ahmed Binobaid
- School of Mechanical Engineering, University of Birmingham, Birmingham, UK; Lecturer, Dental Biomaterials, Restorative and Prosthodontic Dental Sciences Department, School of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs Riyadh, P.O. Box 24264, Riyadh, 11486, Kingdom of Saudi Arabia
| | - Ahmet Guner
- School of Mechanical Engineering, University of Birmingham, Birmingham, UK
| | | | - Amaia Jiménez
- Universidad de Navarra, TECNUN Escuela de Ingeniería, Manuel de Lardizábal 15, 20018, San Sebastián, Spain.
| | - Khamis Essa
- School of Mechanical Engineering, University of Birmingham, Birmingham, UK.
| |
Collapse
|
5
|
Jar C, Archibald A, Gibson M, Westover L. Evaluation of a vibration modeling technique for the in-vitro measurement of dental implant stability. J Mech Behav Biomed Mater 2024; 154:106537. [PMID: 38588632 DOI: 10.1016/j.jmbbm.2024.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
The Advanced System for Implant Stability Testing (ASIST) is a device currently being developed to noninvasively measure implant stability by estimating the mechanical stiffness of the bone-implant interface, which is reported as the ASIST Stability Coefficient (ASC). This study's purpose was to determine whether changes in density, bonding, and drilling technique affect the measured vibration of a dental implant, and whether they can be quantified as a change in the estimated BII stiffness. Stability was also measured using RFA, insertion torque (IT) and the pullout test. Bone-level tapered implants (4.1 mm diameter, 10 mm length) were inserted in polyurethane foam as an artificial bone substitute. Samples were prepared using different bone densities (20, 30, 40 PCF), drilling sequences, and superglue to simulate a bonded implant. Measurements were compared across groups at a significance level of 0.05. The ASC was able to indicate changes in each factor as a change in the interfacial stiffness. IT and pullout force values also showed comparable increases. Furthermore, the relative difference in ISQ values between experimental groups was considerably smaller than the ASC. While future work should be done using biological bone and in-vivo systems, the results of this in-vitro study suggest that modelling of the implant system with a vibration-based approach may provide a noninvasive method of assessing the mechanical stability of the implant.
Collapse
Affiliation(s)
- Chester Jar
- University of Alberta, Department of Mechanical Engineering, Edmonton, Alberta, T6G 2R3, Canada.
| | - Andrew Archibald
- University of Alberta, Department of Medicine, Edmonton, Alberta, T6G 2R3, Canada.
| | - Monica Gibson
- University of Alberta, Department of Dentistry, Edmonton, Alberta, T6G 2R3, Canada.
| | - Lindsey Westover
- University of Alberta, Department of Mechanical Engineering, Edmonton, Alberta, T6G 2R3, Canada; University of Alberta, Department of Biomedical Engineering, Edmonton, Alberta, T6G 2R3, Canada.
| |
Collapse
|
6
|
Farroukh H, Kaddah F, Wehbe T. Numerical investigation of the optimal porosity of titanium foam for dental implants. Heliyon 2024; 10:e28063. [PMID: 38515722 PMCID: PMC10956072 DOI: 10.1016/j.heliyon.2024.e28063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Background This paper aims to indicate numerically the accurate porosity used for dental implants, following the emphasis on the preference for titanium foam on pure titanium implants. A 3D-optimized numerical model is created to demonstrate the detailed differences between models. Method A 3D finite element model was generated using Abaqus for titanium and titanium foam implants with different porosities (50,60,62.5,70, and 80%) fixed in cortical and cancellous bone. The mechanical data for titanium foam is extracted from published literature. We evaluate an artificial intelligent equation for the stress-strain response of titanium foam with various porosities to describe their variations. Results To evaluate the stress-strain variations for different porosities, exponential artificial intelligence provides high accuracy (>0.99). The numerical results show that titanium foam implants appear to transfer more loads to the bordering bones due to their lower stiffness and higher energy absorption, which can help reduce stress shielding problems. In surrounding bones, the maximum VM stress occurs at the neck region from 5.42 MPa for pure titanium to 21.53 MPa for titanium foam with 80% porosity. Additionally, a porosity of 62.5% appears to be the most suitable since Young's modulus for this porosity (13.82 GPa) is close to the cortical bone's modulus (14.5 GPa). This suitability is shown in FEA by the similarity in stress level between pure titanium and the corresponding porosity. Overall, titanium foam implants appear to be a promising option for improving the effectiveness and longevity of bone implants in surgical dentistry. Conclusion Systematic numerical studies on titanium foam dental implants with different porosities. Analysis of the FE results shows that titanium foam with a porosity of 62.5% is more beneficial for use in dental implants.
Collapse
Affiliation(s)
- Hussein Farroukh
- Mechanical Engineering Department, Saint Joseph University of Beirut, Beirut, 17-5208, Lebanon
| | - Fouad Kaddah
- Civil Engineering Department, Saint Joseph University of Beirut, Beirut, 17-5208, Lebanon
| | - Toufic Wehbe
- Mechanical Engineering Department, Saint Joseph University of Beirut, Beirut, 17-5208, Lebanon
| |
Collapse
|
7
|
Lu T, Sun Z, Xia H, Qing J, Rashad A, Lu Y, He X. Comparing the osteogenesis outcomes of different lumbar interbody fusions (A/O/X/T/PLIF) by evaluating their mechano-driven fusion processes. Comput Biol Med 2024; 171:108215. [PMID: 38422963 DOI: 10.1016/j.compbiomed.2024.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND In lumbar interbody fusion (LIF), achieving proper fusion status requires osteogenesis to occur in the disc space. Current LIF techniques, including anterior, oblique, lateral, transforaminal, and posterior LIF (A/O/X/T/PLIF), may result in varying osteogenesis outcomes due to differences in biomechanical characteristics. METHODS A mechano-regulation algorithm was developed to predict the fusion processes of A/O/X/T/PLIF based on finite element modeling and iterative evaluations of the mechanobiological activities of mesenchymal stem cells (MSCs) and their differentiated cells (osteoblasts, chondrocytes, and fibroblasts). Fusion occurred in the grafting region, and each differentiated cell type generated the corresponding tissue proportional to its concentration. The corresponding osteogenesis volume was calculated by multiplying the osteoblast concentration by the grafting volume. RESULTS TLIF and ALIF achieved markedly greater osteogenesis volumes than did PLIF and O/XLIF (5.46, 5.12, 4.26, and 3.15 cm3, respectively). Grafting volume and cage size were the main factors influencing the osteogenesis outcome in patients treated with LIF. A large grafting volume allowed more osteoblasts (bone tissues) to be accommodated in the disc space. A small cage size reduced the cage/endplate ratio and therefore decreased the stiffness of the LIF. This led to a larger osteogenesis region to promote osteoblastic differentiation of MSCs and osteoblast proliferation (bone regeneration), which subsequently increased the bone fraction in the grafting space. CONCLUSION TLIF and ALIF produced more favorable biomechanical environments for osteogenesis than did PLIF and O/XLIF. A small cage and a large grafting volume improve osteogenesis by facilitating osteogenesis-related cell activities driven by mechanical forces.
Collapse
Affiliation(s)
- Teng Lu
- Department of Orthopaedics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi Province, China
| | - Zhongwei Sun
- Department of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu Province, China
| | - Huanhuan Xia
- China Science and Technology Exchange Center, Beijing, China
| | - Jie Qing
- Department of Orthopaedics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi Province, China
| | - Abdul Rashad
- Department of Orthopaedics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi Province, China
| | - Yi Lu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Xijing He
- Department of Orthopaedics, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi Province, China.
| |
Collapse
|
8
|
Liu L, Ma S, Zhang Y, Zhu S, Wu S, Liu G, Yang G. Parametric Design of Porous Structure and Optimal Porosity Gradient Distribution Based on Root-Shaped Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1137. [PMID: 38473608 DOI: 10.3390/ma17051137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Porous structures can reduce the elastic modulus of implants, decrease stress shielding, and avoid bone loss in the alveolar bone and aseptic loosening of implants; however, there is a mismatch between yield strength and elastic modulus as well as biocompatibility problems. This study aimed to investigate the parametric design method of porous root-shaped implants to reduce the stress-shielding effect and improve the biocompatibility and long-term stability and effectiveness of the implants. Firstly, the porous structure part was parametrically designed, and the control of porosity gradient distribution was achieved by using the fitting relationship between porosity and bias and the position function of bias. In addition, the optimal distribution law of the porous structure was explored through mechanical and hydrodynamic analyses of the porous structure. Finally, the biomechanical properties were verified using simulated implant-bone tissue interface micromotion values. The results showed that the effects of marginal and central porosity on yield strength were linear, with the elastic modulus decreasing from 18.9 to 10.1 GPa in the range of 20-35% for marginal porosity, with a maximum decrease of 46.6%; the changes in the central porosity had a more consistent effect on the elastic modulus, ranging from 18.9 to 15.3 GPa in the range of 50-90%, with a maximum downward shift of 19%. The central porosity had a more significant effect on permeability, ranging from 1.9 × 10-7 m2 to 4.9 × 10-7 m2 with a maximum enhancement of 61.2%. The analysis showed that the edge structure had a more substantial impact on the mechanical properties. The central structure could increase the permeability more effectively. Hence, the porous structure with reasonable gradient distribution had a better match between mechanical properties and flow properties. The simulated implantation results showed that the porous implant with proper porosity gradient distribution had better biomechanical properties.
Collapse
Affiliation(s)
- Lijian Liu
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shaobo Ma
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yongkang Zhang
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shouxiao Zhu
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shuxuan Wu
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Guang Liu
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Guang Yang
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
9
|
Vautrin A, Aw J, Attenborough E, Varga P. Fatigue life of 3D-printed porous titanium dental implants predicted by validated finite element simulations. Front Bioeng Biotechnol 2023; 11:1240125. [PMID: 37636001 PMCID: PMC10449641 DOI: 10.3389/fbioe.2023.1240125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction: Porous dental implants represent a promising strategy to reduce failure rate by favoring osseointegration or delivering drugs locally. Incorporating porous features weakens the mechanical capacity of an implant, but sufficient fatigue strength must be ensured as regulated in the ISO 14801 standard. Experimental fatigue testing is a costly and time-intensive part of the implant development process that could be accelerated with validated computer simulations. This study aimed at developing, calibrating, and validating a numerical workflow to predict fatigue strength on six porous configurations of a simplified implant geometry. Methods: Mechanical testing was performed on 3D-printed titanium samples to establish a direct link between endurance limit (i.e., infinite fatigue life) and monotonic load to failure, and a finite element model was developed and calibrated to predict the latter. The tool was then validated by predicting the fatigue life of a given porous configuration. Results: The normalized endurance limit (10% of the ultimate load) was the same for all six porous designs, indicating that monotonic testing was a good surrogate for endurance limit. The geometry input of the simulations influenced greatly their accuracy. Utilizing the as-designed model resulted in the highest prediction error (23%) and low correlation between the estimated and experimental loads to failure (R2 = 0.65). The prediction error was smaller when utilizing specimen geometry based on micro computed tomography scans (14%) or design models adjusted to match the printed porosity (8%). Discussion: The validated numerical workflow presented in this study could therefore be used to quantitatively predict the fatigue life of a porous implant, provided that the effect of manufacturing on implant geometry is accounted for.
Collapse
Affiliation(s)
- Antoine Vautrin
- AO Research Institute Davos, Davos, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jensen Aw
- Attenborough Dental Laboratories Ltd, Nottingham, United Kingdom
| | - Ed Attenborough
- Attenborough Dental Laboratories Ltd, Nottingham, United Kingdom
| | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
10
|
Tsuang FY, Li MJ, Chu PH, Tsou NT, Sun JS. Mechanical performance of porous biomimetic intervertebral body fusion devices: an in vitro biomechanical study. J Orthop Surg Res 2023; 18:71. [PMID: 36717827 PMCID: PMC9885572 DOI: 10.1186/s13018-023-03556-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Degenerative disc disease is one of the most common ailments severely affecting the quality of life in elderly population. Cervical intervertebral body fusion devices are utilized to provide stability after surgical intervention for cervical pathology. In this study, we design a biomimetic porous spinal cage, and perform mechanical simulations to study its performances following American Society for Testing and Materials International (ASTM) standards before manufacturing to improve design process and decrease cost and consumption of material. METHODS The biomimetic porous Ti-6Al-4 V interbody fusion devices were manufactured by selective laser melting (laser powder bed fusion: LPBF in ISO/ASTM 52900 standard) and subsequently post-processed by using hot isostatic pressing (HIP). Chemical composition, microstructure and the surface morphology were studied. Finite element analysis and in vitro biomechanical test were performed. FINDINGS The post heat treatment can optimize its mechanical properties, as the stiffness of the cage decreases to reduce the stress shielding effect between two instrumented bodies. After the HIP treatment, the ductility and the fatigue performance are substantially improved. The use of HIP post-processing can be a necessity to improve the physical properties of customized additive manufacturing processed implants. INTERPRETATION In conclusion, we have successfully designed a biomimetic porous intervertebral device. HIP post-treatment can improve the bulk material properties, optimize the device with reduced stiffness, decreased stress shielding effect, while still provide appropriate space for bone growth. CLINICAL SIGNIFICANCE The biomechanical performance of 3-D printed biomimetic porous intervertebral device can be optimized. The ductility and the fatigue performance were substantially improved, the simultaneously decreased stiffness reduces the stress shielding effect between two instrumented bodies; while the biomimetic porous structures provide appropriate space for bone growth, which is important in the patients with osteoporosis.
Collapse
Affiliation(s)
- Fon-Yih Tsuang
- grid.412094.a0000 0004 0572 7815Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Rd., Taipei, 10002 Taiwan, ROC
| | - Ming-Jun Li
- grid.260539.b0000 0001 2059 7017Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Po-Han Chu
- Research & Development, Ingrowth Biotech. Co., Ltd., 1F, No. 57, Luke 2nd Road, Luzhu District, Kaohsiung Science Park, Kaohsiung, 82151 Taiwan, ROC
| | - Nien-Ti Tsou
- grid.260539.b0000 0001 2059 7017Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Jui-Sheng Sun
- grid.411508.90000 0004 0572 9415Trauma and Emergency Center, China Medical University Hospital, No.2, Xueshi Rd., North Dist., Taichung City, 404018 Taiwan, ROC ,grid.254145.30000 0001 0083 6092Department of Orthopedic Surgery, College of Medicine, China Medical University, No. 2, Yu-Der Rd, Taichung City, 40447 Taiwan, ROC ,grid.412094.a0000 0004 0572 7815Department of Orthopedic Surgery, National Taiwan University Hospital, No.7, Chung-Shan South Rd., Taipei, 10002 Taiwan, ROC
| |
Collapse
|
11
|
Hu Y, Chu Z, Shen S, Zhong J, Zhu B, Wu J, Yuan Z, Dong W. Biomechanical Properties of Novel Lateral Hole Pedicle Screws and Solid Pedicle Screws: A Comparative Study in the Beagle Dogs. Orthop Surg 2022; 15:328-336. [PMID: 36411506 PMCID: PMC9837263 DOI: 10.1111/os.13596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Although pedicle screws are widely used to reconstruct the stability of the spine, screw loosening is a common complication after spine surgery. The main objective of this study was to investigate whether the application of the hollow lateral hole structure had the potential to improve the stability of the pedicle screw by comparing the biomechanical properties of the novel lateral hole pedicle screws (LHPSs) with those of the solid pedicle screws (SPSs) in beagle dogs. METHODS The cancellous bone of the distal femur, proximal femur, distal tibia, and proximal tibia were chosen as implantation sites in beagle dogs. In each of 12 dogs, four LHPSs, and four SPSs were implanted into both lower limbs. At 1, 2, and 3 months after surgery, four dogs were randomly sampled and sacrificed. The LHPS group and SPS group were subdivided into four subgroups according to the length of their duration of implantation (0, 1, 2, 3 months). The biomechanical properties of both pedicle screws were evaluated by pull-out and the cyclic bending tests. RESULTS The results of the study showed that no significant difference was found between LHPSs (276.62 ± 50.11 N) and SPSs (282.47 ± 42.98 N) in pull-out tests at time 0 (P > 0.05). At the same time point after implantations, LHPSs exhibited significantly higher maximal pullout strength than SPSs (month 1: 360.51 ± 25.63 vs 325.87 ± 28.11 N; month 2: 416.59 ± 23.78 vs 362.12 ± 29.27 N; month 3: 447.05 ± 38.26 vs 376.63 ± 32.36 N) (P < 0.05). Moreover, compared with SPSs, LHPSs withstood more loading cycles (month 2: 592 ± 21 vs 534 ± 48 times; month 3: 596 ± 10 vs 543 ± 59 times), and exhibiting less displacement before loosening at month 2 (1.70 ± 0.17 vs 1.96 ± 0.10 mm) and 3 (1.69 ± 0.19 vs 1.92 ± 0.14 mm) (P < 0.05), but no significant difference in time 0 and month 1 (P > 0.05). CONCLUSIONS The pedicle screw with the hollow lateral hole structure could allow bone to grow into the inner architecture, which improved biomechanical properties by extending the contact area between screw and bone tissue after implantation into the cancellous bone. It indicated that LHPS could reduce loosening of the pedicle screws in long term after surgery.
Collapse
Affiliation(s)
- Yong Hu
- Department of Spine SurgeryThe Ningbo No. 6 HospitalNingboChina
| | | | | | - Jian‐bin Zhong
- Department of Spine SurgeryThe Ningbo No. 6 HospitalNingboChina
| | - Bing‐ke Zhu
- Department of Spine SurgeryThe Ningbo No. 6 HospitalNingboChina
| | - Jia‐da Wu
- School of MedicineNingbo UniversityNingboChina
| | - Zhen‐shan Yuan
- Department of Spine SurgeryThe Ningbo No. 6 HospitalNingboChina
| | - Wei‐xin Dong
- Department of Spine SurgeryThe Ningbo No. 6 HospitalNingboChina
| |
Collapse
|
12
|
Hou C, Liu Y, Xu W, Lu X, Guo L, Liu Y, Tian S, Liu B, Zhang J, Wen C. Additive manufacturing of functionally graded porous titanium scaffolds for dental applications. BIOMATERIALS ADVANCES 2022; 139:213018. [PMID: 35882159 DOI: 10.1016/j.bioadv.2022.213018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/31/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022]
Abstract
Graded porous titanium scaffolds are gaining increasing attention as dental implants due to their ability to mimic the mechanical and biological properties of human bone. In this study, we have developed titanium scaffolds with graded primitive structures with porosities of 50.7 %, 61.0 %, 70.5 %, and 80.3 % (denoted as P50, P60, P70, and P80, respectively) for dental applications. The simulation results in the oral environment showed that the maximum von Mises strains and stress of cortical bone tissue around P50, P60, and P70 were lower than 3000 με and 60 MPa, respectively, which was beneficial for bone regeneration. The elastic modulus and yield strength of P50, P60, and P70 ranged within 5.2-13.8 GPa and 88.6-217.8 MPa, respectively. Among these, P60 exhibited the most favorable mechanical properties with a compression yield strength of 163.2 MPa and an elastic modulus of 9.7 GPa, which are desirable mechanical properties for dental material applications. The tested permeabilities of the fabricated specimens were in the range 0.66-6.88 × 10-9 m2, which is within the range of human bone (0.01-12.10 × 10-9 m2). In vitro biocompatibility assay results showed that P60 and P70 had better potential for cell viability and osteogenesis than P50. It can be concluded that P60, which has a compatible elastic modulus, high yield strength, high permeability, good cytocompatibility, and osteogenesis properties, is a promising candidate for bone-tissue engineering applications in dentistry.
Collapse
Affiliation(s)
- Chenjin Hou
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Wei Xu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China.
| | - Xin Lu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China; Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Shiwei Tian
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Bowen Liu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiazhen Zhang
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne 3001, Australia
| |
Collapse
|
13
|
Main Applications and Recent Research Progresses of Additive Manufacturing in Dentistry. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5530188. [PMID: 35252451 PMCID: PMC8894006 DOI: 10.1155/2022/5530188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022]
Abstract
In recent ten years, with the fast development of digital and engineering manufacturing technology, additive manufacturing has already been more and more widely used in the field of dentistry, from the first personalized surgical guides to the latest personalized restoration crowns and root implants. In particular, the bioprinting of teeth and tissue is of great potential to realize organ regeneration and finally improve the life quality. In this review paper, we firstly presented the workflow of additive manufacturing technology. Then, we summarized the main applications and recent research progresses of additive manufacturing in dentistry. Lastly, we sketched out some challenges and future directions of additive manufacturing technology in dentistry.
Collapse
|
14
|
Novel Design and Finite Element Analysis of Diamond-like Porous Implants with Low Stiffness. MATERIALS 2021; 14:ma14226918. [PMID: 34832321 PMCID: PMC8625789 DOI: 10.3390/ma14226918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to design porous implants with low stiffness and evaluate their biomechanical behavior. Thus, two types of porous implants were designed (Type I: a combined structure of diamond-like porous scaffold and traditional tapered thread. Type II: a cylindrical porous scaffold filled by arrayed basic diamond-like pore units). Three implant-supported prosthesis models were constructed from Type I, Type II and commercial implants (control group) and were evaluated by finite element analysis (FEA). The stress distribution pattern of the porous implants were assessed and compared with the control group. In addition, the stiffness of the cylindrical specimens simplified from three types of implants was calculated. The Type I implant exhibited better stress distribution than the Type II implant. The maximum stress between the cortical bone–Type I implant interface was 12.9 and 19.0% lower than the other two groups. The peak stress at the cancellous bone–Type I implant interface was also reduced by 16.8 and 38.7%. Compared with the solid cylinder, the stiffness of diamond-like pore cylinders simplified from the two porous implants geometry was reduced by 61.5 to 76.1%. This construction method of porous implant can effectively lower its stiffness and optimize the stress distribution at the implant–bone interface.
Collapse
|