1
|
Toledano M, Fernández-Romero E, Osorio MT, Osorio E, Aguilera FS, Toledano R, Osorio R. Investigation of the effect of Tideglusib on the hydroxyapatite formation, crystallinity and elasticity of conditioned resin-dentin interfaces. J Dent 2024; 150:105334. [PMID: 39218289 DOI: 10.1016/j.jdent.2024.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES To investigate the effect of dentin infiltration with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs) on hydroxyapatite formation, crystallinity and elasticity of conditioned resin-dentin interfaces. METHODS Dentin conditioned surfaces were infiltrated with NPs or TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging. Resin-dentin interfaces were evaluated through nanoindentation to determine the modulus of elasticity, X-ray diffraction and transmission electron microscopy through selected area diffraction and bright-filed imaging. RESULTS TDg-NPs provoked peaks narrowing after the diffraction-intensity analysis that corresponded with high crystallinity, with an increased modulus of Young after load cycling in comparison with the samples treated with undoped NPs. New minerals, in the group of TDg-NPs, showed the greatest both deviation of line profile from perfect crystal diffraction and dimension of the lattice strain, i.e., crystallite, grain size and microstrain and 002 plane-texture. The new minerals generated after TDg-NPs application and mechanical loading followed a well defined lineation. Undoped NPs mostly produced small hydroxyapatite crystallites, non crystalline or amorphous in nature with poor maturity. CONCLUSIONS Tideglusib promoted the precipitation of hydroxyapatite, as a major crystalline phase, at the intrafibrillar compartment of the collagen fibrils, enabling functional mineralization. TDg-NPs facilitated nucleation of crystals randomly oriented, showing less structural variation in angles and distances that improved crystallographic relative order of atoms and maturity. Nanocrystals inducted by TDg-NPs were hexagonal prisms of submicron size. Thermal challenging of dentin treated with TDg-NPs have provoked a decrease of functional mineralization and crystallinity, associated to immature hydroxyapatite. CLINICAL SIGNIFICANCE New polycrystalline lattice formation generated after TDg-NPs infiltration may become correlated with high mechanical performance. This association can be inferred from the superior crystallinity that was obtained in presence of tideglusib. Immature crystallites formed in dentin treated with undoped NPs will account for a high remineralizing activity.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Enrique Fernández-Romero
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Medicina Clínica y Salud Pública PhD Programme, University of Granada, Granada 18071, Spain
| | - María T Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain.
| | - Raquel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|
2
|
Guo J, Wang P, Li Y, Liu Y, Ye Y, Chen Y, Kankala RK, Tong F. Advances in hybridized nanoarchitectures for improved oro-dental health. J Nanobiotechnology 2024; 22:469. [PMID: 39113060 PMCID: PMC11305065 DOI: 10.1186/s12951-024-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.
Collapse
Affiliation(s)
- Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingtong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
3
|
Toledano M, Aguilera FS, Fernández-Romero E, Lagos AJ, Bonilla M, Lynch CD, Osorio R. Dentin remineralization using a stimuli-responsive engineered small molecule GSK3 antagonists-functionalized adhesive. Dent Mater 2024; 40:393-406. [PMID: 38114343 DOI: 10.1016/j.dental.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVES Tideglusib has shown great performance in terms of dentin regenerative properties. This study aims to evaluate bonding ability, of demineralized dentin infiltrated with polymeric nanoparticles (NPs) doped with tideglusib (TG) (TG-NPs). METHODS Dentin conditioned surfaces were infiltrated with NPs and TG-NPs. Bonded interfaces were created and stored for 24 h and then submitted to mechanical, chemical and thermal challenging. The resin-dentin interface was evaluated through a doubled dye fluorescent technique and a calcium chelator fluorophore under a confocal laser scanning microscopy, and by field emission scanning electron microscopy. RESULTS Dentin surfaces treated with TG-NPs and load cycled produced higher bond strength than the rest of the groups. Immersion of dentin specimens treated with undoped-NPs in collagenase solution attained the lowest microtensile bond strength (MTBS) values. Both porosity and nanoleakage decreased when dentin was infiltrated with TG-NPs, that revealed strong signals of xylenol orange stain at both hybrid layer and dentinal tubules. The presence of NPs, in general, inducted the presence of mineralized interfaces after mechanical loading and thermocycling. CONCLUSIONS Nanoparticles doped with tideglusib promoted the highest dentin bonding efficacy among groups, as they facilitated the maximum bond strength values with creation of mineral deposits at the hybrid layer and dentinal walls. Tideglusib enabled scarce porosity, nanoleakage and advanced sealing among dentin groups. SIGNIFICANCE Doping hydrophilic polymeric NPs with tideglusib, infiltrated in etched dentin represents a reproducible technique to create reparative dentin at the resin-dentin interface, by inducing therapeutic bioactivity.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain.
| | - Enrique Fernández-Romero
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Alejandro Js Lagos
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Marco Bonilla
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Christopher D Lynch
- University Dental School & Hospital/Cork University Dental School & Hospital, Cork, Ireland
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
4
|
Zhang X, Zhang Y, Li Y, Wang X, Zhang X. Restorative Dental Resin Functionalized with Calcium Methacrylate with a Hydroxyapatite Remineralization Capacity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6497. [PMID: 37834635 PMCID: PMC10573481 DOI: 10.3390/ma16196497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
The ability of dental materials to induce the mineralization of enamel like hydroxyapatite (HA) is of great importance. In this article, a novel kind of dental restorative material characterized by a mineralization ability was fabricated by photopolymerization. Calcium methacrylate (CMA) was introduced into the classical bisphenol A-glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) dental resin formulation. This functional dental resin (BTCM) was calcium-rich and can be prepared simply by one-step photopolymerization. The influence of CMA on the photopolymerization kinetics, the dental resin's mechanical properties, and its capacity to induce dynamic in situ HA mineralization were examined. Real-time FTIR, compression modulus, scanning electron microscopy, X-ray spectroscopy, MTT assay, and cell attachment test were carried out. The obtained data were analyzed for statistical significance using analysis of variance (ANOVA). Double bond conversion could be completed in less than 300 s, while the compression modulus of BTCM decreased with the increase in CMA content (30 wt%, 40 wt%, and 50 wt%). After being soaked in Ca(NO3)2 and Na2HPO4 solutions alternatively, dense HA crystals were found on the surface of the dental resin which contained CMA. The amount of HA increased with the increase in CMA content. The MTT results indicated that BTCM possesses good biocompatibility, while the cell adhesion and proliferation investigation demonstrated that L929 cells can adhere and proliferate well on the surface of BTM. Thus, our approach provides a straightforward, cost-effective, and environmentally friendly solution that has the potential for immediate clinical use.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuxuan Zhang
- FuYang Sineva Materials Technology Co., Ltd., Beijing 100176, China;
| | - Ying Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoming Wang
- Shuozhou Comprehensive Inspection and Testing Center, Shuozhou 036000, China
| | - Xueqin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Toledano M, Osorio E, Osorio MT, Aguilera FS, Toledano R, Romero EF, Osorio R. Dexamethasone-doped nanoparticles improve mineralization, crystallinity and collagen structure of human dentin. J Dent 2023; 130:104447. [PMID: 36754111 DOI: 10.1016/j.jdent.2023.104447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVES Bioactive materials have been used for functionalization of adhesives to promote dentin remineralization. This study aims to evaluate bonding ability and both mechanical and chemical behavior of demineralized dentin infiltrated with polymeric nanoparticles doped with dexamethasone (Dex-NPs). METHODS Dentin conditioned surfaces were infiltrated with NPs, Dex-NPs or Dex-Zn-NPs. Bonded interfaces were also created and stored for 24 h or 21d, and then submitted to microtensile bond strength testing. Dentin remineralization was analyzed by Nanohardness, Young's modulus and Raman analysis. RESULTS At 21d of storage, dentin treated with undoped-NPs attained the lowest nanohardness and Young's modulus. Dex-NPs and Zn-Dex-NPs increased dentin nanohardness and Young's modulus after 21d Raman analysis showed high remineralization, crystallinity, crosslinking and better structure of collagen when functionalized Dex-NPs were present at the dentin interface. CONCLUSIONS Infiltration of dentin with Dex-NPs promoted functional remineralization as proved by nanomechanical and morpho-chemical evaluation tests. Dexamethasone in dentin facilitated crystallographic maturity, crystallinity and improved maturity and secondary structure of dentin collagen. CLINICAL SIGNIFICANCE Using dexamethasone-functionalized NPs before resin infiltration is a clear option to obtain dentin remineralization, as these NPs produce the reinforcement of the dentin structure, which will lead to the improvement of the longevity of resin restorations.
Collapse
Affiliation(s)
- Manuel Toledano
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Estrella Osorio
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - María T Osorio
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Fátima S Aguilera
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain.
| | - Raquel Toledano
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Enrique Fernández- Romero
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| | - Raquel Osorio
- Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, University of Granada, Granada 18071, Spain
| |
Collapse
|
6
|
Dos Santos RM, Tsosura TVS, Belardi BE, Chaves-Neto AH, Chiba FY, Mattera MSDLC, Tessarin GWL, Bravo LT, Cintra LTA, Matsushita DH. Melatonin decreases plasma TNF-α and improves nonenzymatic antioxidant defence and insulin sensitivity in rats with apical periodontitis fed a high-fat diet. Int Endod J 2023; 56:164-178. [PMID: 36261317 DOI: 10.1111/iej.13852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 01/17/2023]
Abstract
AIM To analyse the effects of melatonin (ME) treatment on oxidative stress and insulin resistance (IR) in rats with apical periodontitis (AP) fed a high-fat diet (HFD). METHODOLOGY Eighty 60-day-old rats were divided into eight groups: control (CN), AP, HFD with AP (HFDAP), control with ME (CNME), AP with ME (APME), HFD with ME (HFDME) and HFD with AP+ME (HFDAPME). The animals from the HFD groups were fed a HFD throughout the experimental period. On day 7, the animals from the AP groups were subjected to experimental AP, and after 70 days, the ME groups were treated for 30 days. Glycaemia, insulinaemia, homeostatic model assessment for IR index, tumour necrosis factor-α (TNF-α), and interleukin-6 were analysed in plasma using biochemical tests and enzyme-linked immunosorbent assay. Thiobarbituric acid-reactive substances (TBARS), carbonyl protein (CP), superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione (GSH) and total antioxidant capacity (ferric reducing antioxidant power [FRAP]) were analysed in the gastrocnemius muscle. RESULTS (1) Association of AP and HDF exacerbated IR, and ME treatment improved this alteration; (2) AP and HFD and their association showed increased TNF-α, and ME reversed it; (3) TBARS increased in the AP and HFDAP groups, and ME reversed only in the group with the association of disease and diet; (4) CP increased in all HFD groups and improved in the ME groups; (5) GSH activity decreased in all experimental groups, and ME increased this parameter only in the CN and AP groups; (6) FRAP did not change between the groups, but ME treatment increased its activity in the AP and HFD groups; (7) ME increased SOD in the CN and AP groups. CONCLUSION Apical periodontitis and HFD promoted IR, and the association of AP with diet promoted IR exacerbation; this resistance might have been caused by an increase in TNF-α. AP promoted more intense changes in lipid oxidative damage than in protein oxidative damage. In non-enzymatic antioxidant defence, it was observed that both AP and HFD and their association promoted a decrease in GSH levels. Overall, ME treatment reversed changes such as oxidative stress and IR.
Collapse
Affiliation(s)
- Rodrigo Martins Dos Santos
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Programa dePós-Graduação Multicêntrico em Ciências Fisiológicas (PPGMCF)/Sociedade Brasileira de Fisiologia (SBFis), School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Thais Verônica Saori Tsosura
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Programa dePós-Graduação Multicêntrico em Ciências Fisiológicas (PPGMCF)/Sociedade Brasileira de Fisiologia (SBFis), School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Bianca Elvira Belardi
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Programa dePós-Graduação Multicêntrico em Ciências Fisiológicas (PPGMCF)/Sociedade Brasileira de Fisiologia (SBFis), School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Antonio Hernandes Chaves-Neto
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil.,Programa dePós-Graduação Multicêntrico em Ciências Fisiológicas (PPGMCF)/Sociedade Brasileira de Fisiologia (SBFis), School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Fernando Yamamoto Chiba
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | | | | | - Lara Teschi Bravo
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Luciano Tavares Angelo Cintra
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Dóris Hissako Matsushita
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
7
|
Dexamethasone and zinc loaded polymeric nanoparticles reinforce and remineralize coronal dentin. A morpho-histological and dynamic-biomechanical study. Dent Mater 2023; 39:41-56. [PMID: 36460577 DOI: 10.1016/j.dental.2022.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the effect of novel polymeric nanoparticles (NPs) doped with dexamethasone (Dex) on viscoelasticity, crystallinity and ultra-nanostructure of the formed hydroxyapatite after NPs dentin infiltration. METHODS Undoped-NPs, Dex-doped NPs (Dex-NPs) and zinc-doped-Dex-NPs (Zn-Dex-NPs) were tested at dentin, after 24 h and 21 d. A control group without NPs was included. Coronal dentin surfaces were studied by nano-dynamic mechanical analysis measurements, atomic force microscopy, X-ray diffraction and transmission electron microscopy. Mean and standard deviation were analyzed by ANOVA and Student-Newman-Keuls multiple comparisons (p < 0.05). RESULTS At 21 d of storage time, both groups doped with Dex exhibited the highest complex, storage and loss moduli among groups. Zn-Dex-NPs and Dex-NPs promoted the highest and lowest tan delta values, respectively. Dex-NPs contributed to increase the fibril diameters of dentin collagen over time. Dentin surfaces treated with Zn-Dex-NPs attained the lowest nano-roughness values, provoked the highest crystallinity, and produced the longest and shortest crystallite and grain size. These new crystals organized with randomly oriented lattices. Dex-NPs induced the highest microstrain. Crystalline and amorphous matter was present in the mineral precipitates of all groups, but Zn and Dex loaded NPs helped to increase crystallinity. SIGNIFICANCE Dentin treated with Zn-Dex-NPs improved crystallographic and atomic order, providing structural stability, high mechanical performance and tissue maturation. Amorphous content was also present, so high hydroxyapatite solubility, bioactivity and remineralizing activity due to the high ion-rich environment took place in the infiltrated dentin.
Collapse
|
8
|
Melatonin decreases IRF-3 protein expression in the gastrocnemius muscle, reduces IL-1β and LPS plasma concentrations, and improves the lipid profile in rats with apical periodontitis fed on a high-fat diet. Odontology 2022:10.1007/s10266-022-00782-w. [PMID: 36567367 DOI: 10.1007/s10266-022-00782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/14/2022] [Indexed: 12/26/2022]
Abstract
To evaluate the effects of melatonin (MEL) on the expression of toll-like receptor-4 (TLR4); myeloid differentiation primary response protein-88 (MyD88); TIR-domain-containing adapter-inducing interferon-β (TRIF); IFN regulatory-factor-3 (IRF-3); nuclear factor kappa-B (NF-κB); plasma concentrations of interleukin-1β (IL-1β) and lipopolysaccharide (LPS); and lipid profile of rats with apical periodontitis (AP) fed on a high-fat diet (HFD). Eighty 60-day-old rats were divided into eight groups: control, AP, HFD, HFDAP, CNMEL, APMEL, HFDMEL and HFDAPMEL. HFD groups were fed on a HFD for 107 days. On day 7, experimental AP was induced in the AP groups, and after 70 days, MEL (5 mg/kg) was administered to the MEL groups for 30 days. Plasma concentrations of LPS and IL-1β were analyzed using enzyme-linked immunosorbent assay, and the lipid profile was analyzed using biochemical tests. The expression of proteins involved in the TLR4 pathway (TLR4, MyD88, TRIF, IRF-3 and NF-κB) in the gastrocnemius muscle (GM) was evaluated using western blotting and qRT-PCR. Treatment with MEL decreased IRF-3 protein expression in GM and IL-1β plasma concentration in the APMEL and HFDMEL groups. Reduction in LPS plasma concentration was reported only in the HFDMEL group. Additionally, a decrease in LDL and an increase in HDL were observed in the HFDMEL and HFDAPMEL groups. Treatment with MEL exhibited anti-inflammatory and anti-hyperlipidemic effects attributed to HFD and AP by reducing the plasma concentrations of IL-1β and LPS in addition to reducing IRF-3 protein expression in the GM, which is associated with the production of inflammatory cytokines.
Collapse
|
9
|
Jang JH, Kim HJ, Choi JY, Kim HW, Choi S, Kim S, Bang A, Kim DS. Effect of Dentin Desensitizer Containing Novel Bioactive Glass on the Permeability of Dentin. MATERIALS 2022; 15:ma15124041. [PMID: 35744100 PMCID: PMC9227448 DOI: 10.3390/ma15124041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022]
Abstract
The objective of this study was to evaluate the effect of novel bioactive glass (BAG)-containing desensitizers on the permeability of dentin. Experimental dentin desensitizers containing 3 wt% BAG with or without acidic functional monomers (10-MDP or 4-META) were prepared. A commercial desensitizer, Seal & Protect (SNP), was used as a control. To evaluate the permeability of dentin, real-time dentinal fluid flow (DFF) rates were measured at four different time points (demineralized, immediately after desensitizer application, after two weeks in simulated body fluid (SBF), and post-ultrasonication). The DFF reduction rate (ΔDFF) was also calculated. The surface changes were analyzed using field emission scanning electron microscopy (FE-SEM). Raman spectroscopy was performed to analyze chemical changes on the dentin surface. The ΔDFF of the desensitizers containing BAG, BAG with 10-MDP, and BAG with 4-META significantly increased after two weeks of SBF storage and post-ultrasonication compared to the SNP at each time point (p < 0.05). Multiple precipitates were observed on the surfaces of the three BAG-containing desensitizers. Raman spectroscopy revealed hydroxyapatite (HAp) peaks on the dentin surfaces treated with the three BAG-containing desensitizers. Novel BAG-containing dentin desensitizers can reduce the DFF rate about 70.84 to 77.09% in the aspect of reduction of DFF through the HAp precipitations after two weeks of SBF storage.
Collapse
Affiliation(s)
- Ji-Hyun Jang
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul 02453, Korea;
| | - Hyun-Jung Kim
- Department of Conservative Dentistry, Kyung Hee University Dental Hospital, Seoul 02453, Korea;
| | - Joo-Young Choi
- Department of Conservative Dentistry, Graduate School, Kyung Hee University, Seoul 02453, Korea;
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
| | - Samjin Choi
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02453, Korea; (S.C.); (S.K.); (A.B.)
| | - Soogeun Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02453, Korea; (S.C.); (S.K.); (A.B.)
| | - Ayoung Bang
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02453, Korea; (S.C.); (S.K.); (A.B.)
| | - Duck-Su Kim
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul 02453, Korea;
- Correspondence: ; Tel.: +82-2-958-9330; Fax: +82-2-960-5108
| |
Collapse
|
10
|
Toledano-Osorio M, Aguilera FS, Muñoz-Soto E, Osorio E, Toledano M, Escames G, Medina-Castillo AL, Osorio MT, López-López MT, Vallecillo-Rivas M, Osorio R. Melatonin-doped polymeric nanoparticles induce high crystalline apatite formation in root dentin. Dent Mater 2021; 37:1698-1713. [PMID: 34544591 DOI: 10.1016/j.dental.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/04/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the effect of novel polymeric nanoparticles (NPs) doped with melatonin (ML) on nano-hardness, crystallinity and ultrastructure of the formed hydroxyapatite after endodontic treatment. METHODS Undoped-NPs and ML-doped NPs (ML-NPs) were tested at radicular dentin, after 24 h and 6 m. A control group without NPs was included. Radicular cervical and apical dentin surfaces were studied by nano-hardness measurements, X-ray diffraction and transmission electron microscopy. Mean and standard deviation were analyzed by ANOVA and Student-Newman-Keuls multiple comparisons (p < 0.05). RESULTS Cervical dentin treated with undoped NPs maintained its nano-hardness values after 6 m of storage being [24 h: 0.29 (0.01); 6 m: 0.30 (0.02) GPa], but it decreased at apical dentin [24 h: 0.36 (0.01); 6 m: 0.28 (0.02) GPa]. When ML-NPs were used, nano-hardness was similar over time [24h: 0.31 (0.02); 6 m: 0.28 (0.03) GPa], at apical dentin. Root dentin treated with ML-NPs produced, in general, high crystallinity of new minerals and thicker crystals than those produced in the rest of the groups. After 6 m, crystals became organized in randomly oriented polyhedral, square polygonal block-like apatite or drop-like apatite polycrystalline lattices when ML-NPs were used. Undoped NPs generated poor crystallinity, with preferred orientation of small crystallite and increased microstrain. SIGNIFICANCE New polycrystalline formations encountered in dentin treated with ML-NPs may produce structural dentin stability and high mechanical performance at the root. The decrease of mechanical properties over time in dentin treated without NPs indicates scarce remineralization potential, dentin demineralization and further potential degradation. The amorphous stage may provide high hydroxyapatite solubility and remineralizing activity.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- University of Granada, Department of Stomatology, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Fátima S Aguilera
- University of Granada, Department of Stomatology, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Esther Muñoz-Soto
- University of Granada, Department of Stomatology, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Estrella Osorio
- University of Granada, Department of Stomatology, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Manuel Toledano
- University of Granada, Department of Stomatology, Colegio Máximo de Cartuja s/n, Granada 18071, Spain.
| | - Germaine Escames
- Faculty of Medicine, Department of Physiology, Biomedical Research Center, CIBERFES, Ibs. San Cecilio University Hospital, University of Granada, Granada, Spain
| | - Antonio L Medina-Castillo
- University of Granada, NanoMyP, Spin-Off Enterprise, Edificio BIC-Granada, Av. Innovación 1, 18016, Armilla, Granada, Spain
| | | | - Modesto T López-López
- University of Granada, Faculty of Science, Applied Physics Department, Av. Fuente Nueva s/n, 18071 Granada, Spain
| | - Marta Vallecillo-Rivas
- University of Granada, Department of Stomatology, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Raquel Osorio
- University of Granada, Department of Stomatology, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|