1
|
Landmayer K, Iatarola BDO, Pereira TP, Mori RS, Obeid AT, Vertuan M, Chrisostomo DA, Magalhães AC, Alreshaid L, dos Santos PH, Prakki A, Francisconi-dos-Rios LF. Effect of EGCG-Methacrylate-Functionalized Resin Infiltrant on White Spot Lesions: An In Vitro Study. J Funct Biomater 2024; 16:6. [PMID: 39852562 PMCID: PMC11765685 DOI: 10.3390/jfb16010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
This study evaluated the color change (ΔE00) and penetration depth (PD) of white spot lesions (WSLs) infiltrated with the resin infiltrant (Icon®) functionalized with methacrylate epigallocatechin-3-gallate (EGCG). To introduce polymerizable double bonds, EGCG was reacted with methacryloyl chloride (EM). Subsequently, the Icon resin infiltrant (I) was loaded with neat EGCG (IE) or EGCG-methacrylate (IEM) at 2 wt% each. WSLs were created on bovine enamel blocks and treated with I, IE, or IEM. Sound and untreated enamel surfaces were used as controls (C). Infiltrant PD (%) was determined by Confocal Laser Scanning Microscopy (CLSM, n = 12) analysis. For color change (ΔE00) determination (n = 14), ΔL, Δa, and Δb, half of each sample was kept sound as a reference area. The color was determined with a spectrophotometer. Data were statistically evaluated (p = 0.05). Surface morphology was obtained as a qualitative response variable using 3D CLSM. PD (%) did not differ statistically for I, IE, and IEM (p = 0.780). Groups I and IEM showed similar performance on color change (ΔE00) compared to the control group, while IE exhibited intermediate results, with no significant difference observed between the untreated, I, and IEM groups (p < 0.001). IEM promoted the masking of the WSL color without interfering with the PD.
Collapse
Affiliation(s)
- Karin Landmayer
- Restorative Discipline, Dental Research Institute, Faculty of Dentistry, University of Toronto, 101 Elm Street, Toronto, ON M5G 1G6, Canada; (K.L.)
- Department of Operative Dentistry, School of Dentistry, University of São Paulo, Avenida Professor Lineu Prestes, 2227, São Paulo 05508-000, SP, Brazil
| | - Bruna de Oliveira Iatarola
- Department of Operative Dentistry, School of Dentistry, University of São Paulo, Avenida Professor Lineu Prestes, 2227, São Paulo 05508-000, SP, Brazil
| | - Talita Portela Pereira
- Department of Operative Dentistry, School of Dentistry, University of São Paulo, Avenida Professor Lineu Prestes, 2227, São Paulo 05508-000, SP, Brazil
| | - Raquel Shimizu Mori
- Department of Operative Dentistry, School of Dentistry, University of São Paulo, Avenida Professor Lineu Prestes, 2227, São Paulo 05508-000, SP, Brazil
| | - Alyssa Teixeira Obeid
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, SP, Brazil
| | - Mariele Vertuan
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, SP, Brazil
| | - Daniela Alvim Chrisostomo
- Restorative Discipline, Dental Research Institute, Faculty of Dentistry, University of Toronto, 101 Elm Street, Toronto, ON M5G 1G6, Canada; (K.L.)
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, SP, Brazil
| | - Lulwah Alreshaid
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, P.O. Box 3660, Riyadh 11481 K.S.A, Saudi Arabia
| | - Paulo Henrique dos Santos
- Restorative Discipline, Dental Research Institute, Faculty of Dentistry, University of Toronto, 101 Elm Street, Toronto, ON M5G 1G6, Canada; (K.L.)
| | - Anuradha Prakki
- Restorative Discipline, Dental Research Institute, Faculty of Dentistry, University of Toronto, 101 Elm Street, Toronto, ON M5G 1G6, Canada; (K.L.)
| | - Luciana Fávaro Francisconi-dos-Rios
- Department of Operative Dentistry, School of Dentistry, University of São Paulo, Avenida Professor Lineu Prestes, 2227, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
2
|
Li Y, Cheng L, Li M. Effects of Green Tea Extract Epigallocatechin-3-Gallate on Oral Diseases: A Narrative Review. Pathogens 2024; 13:634. [PMID: 39204235 PMCID: PMC11357325 DOI: 10.3390/pathogens13080634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVES Oral diseases are among the most prevalent diseases globally. Accumulating new evidence suggests considerable benefits of epigallocatechin-3-gallate (EGCG) for oral health. This review aims to explore the role and application of EGCG in main oral diseases. METHODS This narrative review thoroughly examines and summarizes the most recent literature available in scientific databases (PubMed, Web of Science, Scopus, and Google Scholar) reporting advances in the role and application of EGCG within the dental field. The major keywords used included "EGCG", "green tea extract", "oral health", "caries", "pulpitis", "periapical disease", "periodontal disease", "oral mucosa", "salivary gland", and "oral cancer". CONCLUSIONS EGCG prevents and manages various oral diseases through its antibacterial, anti-inflammatory, antioxidant, and antitumor properties. Compared to traditional treatments, EGCG generally exhibits lower tissue irritation and positive synergistic effects when combined with other therapies. Novel delivery systems or chemical modifications can significantly enhance EGCG's bioavailability, prolong its action, and reduce toxicity, which are current hotspots in developing new materials. CLINICAL SIGNIFICANCE this review provides an exhaustive overview of the biological activities of EGCG to major oral diseases, alongside an exploration of applications and limitations, which serves as a reference for preventing and managing oral ailments.
Collapse
Affiliation(s)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
3
|
Lee KH, Wang CY, Tsai YR, Huang SY, Huang WT, Kasimayan U, K P O M, Chiang YC. Epigallocatechin gallate-immobilized antimicrobial resin with rechargeable fluorinated synergistic composite for enhanced caries control. Dent Mater 2024; 40:407-419. [PMID: 38123384 DOI: 10.1016/j.dental.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES Given the global prevalence of dental caries, impacting 2.5 billion individuals, the development of sophisticated prevention filling materials is crucial. Streptococcus mutans, the principal caries-causing strain, produces acids that demineralize teeth and initiate dental caries. To address this issue, we aimed to develop a synergistic resin-based composite for enhancing caries control. METHODS The synergistic resin composite incorporates fluorinated kaolinite and silanized Al2O3 nanoparticle fillers into an epigallocatechin gallate (EGCG) immobilized urethane-modified epoxy acrylate (U-EA) resin matrix, referred to the as-prepared resin composite. The EGCG-modified TPGDA/U-EA network was synthesized by preparing methacrylate-functionalized isocyanate (HI), reacting it with EGCG to form HI-EGCG, and then incorporating HI-EGCG into the TPGDA/U-EA matrix. The lamellar space within the kaolinite layer was expanded through the intercalation of acrylamide into kaolinite, enhancing its capability to adsorb and release fluoride ions (F-). The layered structure of acrylamide/ kaolinite in the U-EA resin composite acts as a F- reservoir. RESULTS The physico-mechanical properties of the as-prepared resin composites are comparable to those of commercial products, exhibiting lower polymerization shrinkage, substantial F- release and recharge and favorable diametral tensile strength. The immobilized EGCG in the composite exhibits potent antimicrobial properties, effectively reducing the biofilm biomass. Furthermore, the synergistic effect of EGCG and fluorinated kaolinite efficiently counteracts acid-induced hydroxyapatite dissolution, thereby suppressing demineralization and promoting enamel remineralization. SIGNIFICANCE Our innovative EGCG and fluoride synergistic composite provides enhanced antimicrobial properties, durable anti-demineralization, and tooth remineralization effects, positioning it as a promising solution for effective caries control and long-term dental maintenance.
Collapse
Affiliation(s)
- Kuan-Han Lee
- Department of Dentistry, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Chen-Ying Wang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan; Division of Periodontology, Department of Dentistry, National Taiwan University Hospital, Taiwan
| | - Yun-Rong Tsai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan; Division of Restorative and Esthetic Dentistry, Department of Dentistry, National Taiwan University Hospital, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Szu-Ying Huang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan; Division of Restorative and Esthetic Dentistry, Department of Dentistry, National Taiwan University Hospital, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Wei-Te Huang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Uma Kasimayan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Mahesh K P O
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Yu-Chih Chiang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan; Division of Restorative and Esthetic Dentistry, Department of Dentistry, National Taiwan University Hospital, 1, Chang-de Street, Taipei 10016, Taiwan; School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
4
|
Pidhatika B, Widyaya VT, Nalam PC, Swasono YA, Ardhani R. Surface Modifications of High-Performance Polymer Polyetheretherketone (PEEK) to Improve Its Biological Performance in Dentistry. Polymers (Basel) 2022; 14:polym14245526. [PMID: 36559893 PMCID: PMC9787615 DOI: 10.3390/polym14245526] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
This comprehensive review focuses on polyetheretherketone (PEEK), a synthetic thermoplastic polymer, for applications in dentistry. As a high-performance polymer, PEEK is intrinsically robust yet biocompatible, making it an ideal substitute for titanium-the current gold standard in dentistry. PEEK, however, is also inert due to its low surface energy and brings challenges when employed in dentistry. Inert PEEK often falls short of achieving a few critical requirements of clinical dental materials, such as adhesiveness, osseoconductivity, antibacterial properties, and resistance to tribocorrosion. This study aims to review these properties and explore the various surface modification strategies that enhance the performance of PEEK. Literatures searches were conducted on Google Scholar, Research Gate, and PubMed databases using PEEK, polyetheretherketone, osseointegration of PEEK, PEEK in dentistry, tribology of PEEK, surface modifications, dental applications, bonding strength, surface topography, adhesive in dentistry, and dental implant as keywords. Literature on the topics of surface modification to increase adhesiveness, tribology, and osseointegration of PEEK were included in the review. The unavailability of full texts was considered when excluding literature. Surface modifications via chemical strategies (such as sulfonation, plasma treatment, UV treatment, surface coating, surface polymerization, etc.) and/or physical approaches (such as sandblasting, laser treatment, accelerated neutral atom beam, layer-by-layer assembly, particle leaching, etc.) discussed in the literature are summarized and compared. Further, approaches such as the incorporation of bioactive materials, e.g., osteogenic agents, antibacterial agents, etc., to enhance the abovementioned desired properties are explored. This review presents surface modification as a critical and essential approach to enhance the biological performance of PEEK in dentistry by retaining its mechanical robustness.
Collapse
Affiliation(s)
- Bidhari Pidhatika
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
- Collaborative Research Center for Biomedical Scaffolds, National Research and Innovation Agency of the Republic Indonesia and Universitas Gadjah Mada, Jalan Denta No. 1, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Vania Tanda Widyaya
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
| | - Prathima C. Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260-1900, USA
| | - Yogi Angga Swasono
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
| | - Retno Ardhani
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada, Jalan Denta No. 1, Sekip Utara, Yogyakarta 55281, Indonesia
- Correspondence:
| |
Collapse
|