1
|
Xin K, Sun R, Xiao W, Lu W, Sun C, Lou J, Xu Y, Chen T, Wu D, Gao Y. Short Peptides from Asian Scorpions: Bioactive Molecules with Promising Therapeutic Potential. Toxins (Basel) 2025; 17:114. [PMID: 40137887 PMCID: PMC11946205 DOI: 10.3390/toxins17030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Scorpion venom peptides, particularly those derived from Asian species, have garnered significant attention, offering therapeutic potential in pain management, cancer, anticoagulation, and infectious diseases. This review provides a comprehensive analysis of scorpion venom peptides, focusing on their roles as voltage-gated sodium (Nav), potassium (Kv), and calcium (Cav) channel modulators. It analyzed Nav1.7 inhibition for analgesia, Kv1.3 blockade for anticancer activity, and membrane disruption for antimicrobial effects. While the low targeting specificity and high toxicity of some scorpion venom peptides pose challenges to their clinical application, recent research has made strides in overcoming these limitations. This review summarizes the latest progress in scorpion venom peptide research, discussing their mechanisms of action, therapeutic potential, and challenges in clinical translation. This work aims to provide new insights and directions for the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Kaiyun Xin
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Ruize Sun
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (R.S.); (T.C.)
| | - Wanyang Xiao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Weijie Lu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Chenhui Sun
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Jietao Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Yanyan Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (R.S.); (T.C.)
| | - Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| |
Collapse
|
2
|
Li D, Yan Y, Yu L, Duan Y. Procaine Attenuates Pain Behaviors of Neuropathic Pain Model Rats Possibly via Inhibiting JAK2/STAT3. Biomol Ther (Seoul) 2016; 24:489-94. [PMID: 27530113 PMCID: PMC5012873 DOI: 10.4062/biomolther.2016.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/25/2016] [Accepted: 05/11/2016] [Indexed: 01/04/2023] Open
Abstract
Neuropathic pain (NPP) is the main culprit among chronic pains affecting the normal life of patients. Procaine is a frequently-used local anesthesia with multiple efficacies in various diseases. However, its role in modulating NPP has not been reported yet. This study aims at uncovering the role of procaine in NPP. Rats were pretreated with procaine by intrathecal injection. Then NPP rat model was induced by sciatic nerve chronic compression injury (CCI) and behavior tests were performed to analyze the pain behaviors upon mechanical, thermal and cold stimulations. Spinal expression of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) was detected by qRT-PCR and western blot. JAK2 was also overexpressed in procaine treated model rats for behavior tests. Results showed that procaine pretreatment improved the pain behaviors of model rats upon mechanical, thermal and cold stimulations, with the best effect occurring on the 15(th) day post model construction (p<0.05). Procaine also inhibited JAK2 and STAT3 expression in both mRNA (p<0.05) and protein levels. Overexpression of JAK2 increased STAT3 level and reversed the improvement effects of procaine in pain behaviors (p<0.01). These findings indicate that procaine is capable of attenuating NPP, suggesting procaine is a potential therapeutic strategy for treating NPP. Its role may be associated with the inhibition on JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Donghua Li
- Department of Pain, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China.,Department of Anesthesiology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Yurong Yan
- Department of Anesthesiology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Lingzhi Yu
- Department of Pain, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| | - Yong Duan
- Department of State-owned Assets Management, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| |
Collapse
|
3
|
Jennekens W, Dankers F, Janssen F, Toet M, van der Aa N, Niemarkt H, van Pul C, de Vries L, Andriessen P. Effects of midazolam and lidocaine on spectral properties of the EEG in full-term neonates with stroke. Eur J Paediatr Neurol 2012; 16:642-52. [PMID: 22464455 DOI: 10.1016/j.ejpn.2012.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/24/2012] [Accepted: 03/03/2012] [Indexed: 11/17/2022]
Abstract
Assessment of the neonatal EEG may be hampered by drug-specific changes in electrocortical activity. To quantify effects of a loading dose of midazolam and lidocaine on the EEG frequency spectrum of full-term neonates with perinatal arterial ischemic stroke (PAIS), 11 full-term infants underwent multi-channel amplitude-integrated EEG (aEEG) and EEG recordings. During recording, midazolam and/or lidocaine were administered as anti-epileptic drug. Retrospectively, we performed spectral analysis on 4-h EEG segments around the loading dose. The frequency spectrum was divided in δ (1-4 Hz), θ (4-8 Hz), α (8-13 Hz) and β (13-30 Hz) bands. Midazolam induced immediate suppression of the aEEG background pattern for 30-60 min. Spectral EEG analysis showed decreased total and absolute frequency band powers. Relative δ power decreased, θ power increased while α and β powers remained constant. Lidocaine induced no aEEG background pattern suppression. Total and absolute EEG band powers were unchanged. Relative δ power decreased, θ and α power increased and β power remained constant. Effects of lidocaine were more pronounced in the stroke-affected hemisphere. In conclusions, both drugs induced a shift from low to higher frequency electrocortical activity. Additionally, midazolam reduced total EEG power. These spectral changes differ from those seen in adult studies.
Collapse
Affiliation(s)
- Ward Jennekens
- Dept. of Clinical Physics, Máxima Medical Centre, Veldhoven, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Onkal R, Djamgoz MB. Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: Clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol 2009; 625:206-19. [DOI: 10.1016/j.ejphar.2009.08.040] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/04/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022]
|
5
|
Liu Y, Yohrling GJ, Wang Y, Hutchinson TL, Brenneman DE, Flores CM, Zhao B. Carisbamate, a novel neuromodulator, inhibits voltage-gated sodium channels and action potential firing of rat hippocampal neurons. Epilepsy Res 2008; 83:66-72. [PMID: 19013768 DOI: 10.1016/j.eplepsyres.2008.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 09/18/2008] [Accepted: 09/23/2008] [Indexed: 11/18/2022]
Abstract
Carisbamate (RWJ-333369; (S)-2-O-carbamoyl-1-o-chlorophenyl-ethanol) is a novel investigational antiepileptic drug that exhibits a broad-spectrum of activity in a number of animal models of seizure and drug refractory epilepsy. In an effort to understand the molecular mechanism by which carisbamate produces its antiepileptic actions, we studied its effects on the function of voltage-gated, rat brain sodium and potassium channels and on the repetitive firing of action potentials in cultured rat hippocampal neurons. In whole-cell patch clamp recording, carisbamate resulted in a concentration-, voltage- and use-dependent inhibition of rat Nav1.2, with an IC(50) value of 68 microM at -67 mV. In rat hippocampal neurons, carisbamate similarly blocked voltage-gated sodium channels, with an IC(50) value of 89 microM at -67 mV, and inhibited repetitive firing of action potentials in a concentration-dependent manner (by 46% at 30 microM and 87% at 100 microM, respectively). Carisbamate had no effect on the steady-state membrane potential or voltage-gated potassium channels (K(v)) in these neurons. These inhibitory effects of carisbamate occurred at therapeutically relevant concentrations in vivo, raising the possibility that block of voltage-gated sodium channels by carisbamate contributes to its antiepileptic activity.
Collapse
Affiliation(s)
- Yi Liu
- Analgesics Drug Discovery, Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Welsh & McKean Roads, P.O. Box 776, Spring House, PA 19477-0776, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Blunk JA, Burke M, Maarouf M, Bührle CP. Reversible and irreversible knockout of the ventroposterolateral thalamic nucleus measured by intracerebral SEP recordings in the rat brain--an aid to neuronavigation in small nuclei. J Neurosci Methods 2007; 162:19-25. [PMID: 17204336 DOI: 10.1016/j.jneumeth.2006.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 11/29/2006] [Accepted: 12/03/2006] [Indexed: 11/26/2022]
Abstract
Centrally active drugs are often hard to administer because of the blood brain barrier, and frequently high systemic doses are required to reach sufficient brain parenchyma concentrations, since these drugs are, additionally, diluted in the total blood volume. Moreover, topical administration via the systemic route is not possible. We here propose a technique for the local, quantitative deposition of active substances at defined intracerebral targets, e.g. the thalamic nuclei. We used a long micropipette and stereotactically advanced it to the desired coordinates under electrophysiological control. The pipette acted as both an electrode for intracerebral recordings and as a transportation means for the drug. The amplitude of intracerebral evoked potentials relayed by the thalamic nucleus to the sensorimotor cortex indicated the distance between the pipette tip and the neurons of the targeted nucleus. Data were obtained from anesthetized rats, where the micropipette was advanced towards the nucleus ventralis posterolateralis (VPL) during contralateral electrical forepaw stimulation and intracerebral recording of somatosensory evoked potentials. Within the VPL we either injected lidocaine or kainic acid, both resulting in an attenuation of the intracerebral as well as the cortical evoked potentials. This proposed tool may be useful for functional investigations of deep brain structures.
Collapse
Affiliation(s)
- James A Blunk
- Max-Planck-Institute for Neurological Research, Gleueler Strasse 50, 50931 Cologne [corrected] Germany.
| | | | | | | |
Collapse
|