1
|
Li AH, Bu S, Wang L, Liang AM, Luo HY. Impact of propofol and sevoflurane anesthesia on cognition and emotion in gastric cancer patients undergoing radical resection. World J Gastrointest Oncol 2024; 16:79-89. [PMID: 38292851 PMCID: PMC10824106 DOI: 10.4251/wjgo.v16.i1.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Propofol and sevoflurane are commonly used anesthetic agents for maintenance anesthesia during radical resection of gastric cancer. However, there is a debate concerning their differential effects on cognitive function, anxiety, and depression in patients undergoing this procedure. AIM To compare the effects of propofol and sevoflurane anesthesia on postoperative cognitive function, anxiety, depression, and organ function in patients undergoing radical resection of gastric cancer. METHODS A total of 80 patients were involved in this research. The subjects were divided into two groups: Propofol group and sevoflurane group. The evaluation scale for cognitive function was the Loewenstein occupational therapy cognitive assessment (LOTCA), and anxiety and depression were assessed with the aid of the self-rating anxiety scale (SAS) and self-rating depression scale (SDS). Hemodynamic indicators, oxidative stress levels, and pulmonary function were also measured. RESULTS The LOTCA score at 1 d after surgery was significantly lower in the propofol group than in the sevoflurane group. Additionally, the SAS and SDS scores of the sevoflurane group were significantly lower than those of the propofol group. The sevoflurane group showed greater stability in heart rate as well as the mean arterial pressure compared to the propofol group. Moreover, the sevoflurane group displayed better pulmonary function and less lung injury than the propofol group. CONCLUSION Both propofol and sevoflurane could be utilized as maintenance anesthesia during radical resection of gastric cancer. Propofol anesthesia has a minimal effect on patients' pulmonary function, consequently enhancing their postoperative recovery. Sevoflurane anesthesia causes less impairment on patients' cognitive function and mitigates negative emotions, leading to an improved postoperative mental state. Therefore, the selection of anesthetic agents should be based on the individual patient's specific circumstances.
Collapse
Affiliation(s)
- Ao-Han Li
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei Province, China
| | - Su Bu
- Department of Cardiothoracic Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei Province, China
| | - Ling Wang
- Department of Rehabilitation, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei Province, China
| | - Ai-Min Liang
- Department of Internal Medicine-Cardiovascular, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei Province, China
| | - Hui-Yu Luo
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei Province, China
| |
Collapse
|
2
|
Wu B, Guo Y, Deng J, Chen Q, Min S. Reduced Synaptic Plasticity Contributes to Resistance Against Constant-Stimulus Electroconvulsive Treatment in a Rat Model of Stress-Induced Depression. Neuropsychiatr Dis Treat 2021; 17:1433-1442. [PMID: 34007181 PMCID: PMC8123954 DOI: 10.2147/ndt.s304075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/18/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Depression is a common mood disorder in humans worldwide. Electroconvulsive therapy (ECT) remains the most effective treatment for patients with drug-resistant or severe depression; however, during ECT, electrical resistance can occur, antagonizing ECT efficacy. We aimed to investigate how depressed patients develop resistance to electric shocks during ECT. METHODS Rats exposed to chronic unpredictable stress exert similar impairments in hippocampal synaptic plasticity as those in depressed humans, including hippocampal neuronal atrophy and reduced synaptic function and synapse-related proteins. Therefore, a rat model was used to model depressive-like behaviors in the current study. Depression-like behavior was stimulated in Sprague Dawley (SD) rats that were then randomized into six groups: control group (C); a rat model of stress-induced depression group (D); and four groups in which a rat model of stress-induced depression received one, three, five, or seven electroconvulsive shocks (ECS; DE1, DE3, DE5, and DE7). The sucrose preference test (SPT) and Morris water maze (MWM) were utilized to evaluate anhedonia and spatial learning and memory in rats, respectively. Synaptic plasticity was recorded electrophysiologically in terms of field excitatory postsynaptic potential (fEPSP) and long-term potentiation (LTP). RESULTS The rat model of stress-induced depression triggered a decrease in the sucrose preference percentage (SPP) and the baseline fEPSP slope relative to those observed for the C group, and these changes were significantly rescued by ECT in a shock number-dependent manner within five shocks. However, the rat model of stress-induced depression displayed an increase in the escape latency and a decrease in space exploration time, in addition to decreased LTP relative to those in the C group, which was further augmented by ECT in a shock number-dependent manner within five shocks. CONCLUSION Changes in synaptic plasticity might be responsible for the development of resistance against constant-stimulus ECT in a rat model of stress-induced depression.
Collapse
Affiliation(s)
- Bin Wu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuanyuan Guo
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jie Deng
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qibin Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|
3
|
Propofol downregulates the activity of glutamatergic neurons in the basal forebrain via affecting intrinsic membrane properties and postsynaptic GABAARs. Neuroreport 2020; 31:1242-1248. [PMID: 33075002 DOI: 10.1097/wnr.0000000000001540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Propofol anesthesia rapidly causes loss of consciousness, while the neural mechanism underlying this phenomenon is still unclear. Glutamatergic neurons in the basal forebrain play an important role in initiation and maintenance of wakefulness. Here, we selectively recorded the activity of glutamatergic neurons in vGlut-2-Cre mice. Propofol induced outward currents in a concentration-dependent manner. Bath application of propofol generated membrane hyperpolarization and suppressed the firing rates in these neurons. Propofol-induced stable outward currents persisted after blockade of the action potentials, implying a direct postsynaptic effect of propofol. Furthermore, propofol selectively increased the GABAergic inhibitory synaptic inputs via affecting the GABAARs, but did not affect the glutamatergic transmissions. Together, propofol inhibits the excitability of the glutamatergic neurons via direct influencing the membrane intrinsic properties and the inhibitory synaptic transmission. This inhibitory effect might provide a novel mechanism for the propofol-induced anesthesia.
Collapse
|
4
|
Hao X, Ou M, Zhang D, Zhao W, Yang Y, Liu J, Yang H, Zhu T, Li Y, Zhou C. The Effects of General Anesthetics on Synaptic Transmission. Curr Neuropharmacol 2020; 18:936-965. [PMID: 32106800 PMCID: PMC7709148 DOI: 10.2174/1570159x18666200227125854] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a class of drugs that target the central nervous system and are widely used for various medical procedures. General anesthetics produce many behavioral changes required for clinical intervention, including amnesia, hypnosis, analgesia, and immobility; while they may also induce side effects like respiration and cardiovascular depressions. Understanding the mechanism of general anesthesia is essential for the development of selective general anesthetics which can preserve wanted pharmacological actions and exclude the side effects and underlying neural toxicities. However, the exact mechanism of how general anesthetics work is still elusive. Various molecular targets have been identified as specific targets for general anesthetics. Among these molecular targets, ion channels are the most principal category, including ligand-gated ionotropic receptors like γ-aminobutyric acid, glutamate and acetylcholine receptors, voltage-gated ion channels like voltage-gated sodium channel, calcium channel and potassium channels, and some second massager coupled channels. For neural functions of the central nervous system, synaptic transmission is the main procedure for which information is transmitted between neurons through brain regions, and intact synaptic function is fundamentally important for almost all the nervous functions, including consciousness, memory, and cognition. Therefore, it is important to understand the effects of general anesthetics on synaptic transmission via modulations of specific ion channels and relevant molecular targets, which can lead to the development of safer general anesthetics with selective actions. The present review will summarize the effects of various general anesthetics on synaptic transmissions and plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Li
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| | - Cheng Zhou
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| |
Collapse
|
5
|
Propofol inhibited the excitability of pyramidal neurons in the orbitofrontal cortex by influencing the delayed rectifier K+ channels and γ-aminobutyric acid type A receptors. Neuroreport 2019; 30:102-107. [DOI: 10.1097/wnr.0000000000001167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Ren L, Hao X, Min S, Deng J, Chen Q, Chen H, Liu D. Anesthetics alleviate learning and memory impairment induced by electroconvulsive shock by regulation of NMDA receptor-mediated metaplasticity in depressive rats. Neurobiol Learn Mem 2018; 155:65-77. [PMID: 29953948 DOI: 10.1016/j.nlm.2018.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 02/05/2023]
Abstract
Along with its outstanding antidepressant effect, electroconvulsive shock (ECS) can induce learning and memory impairment. Propofol and ketamine have shown to be useful in alleviating the learning and memory impairment. Nevertheless, the mechanism still remains unclear. This study investigated the role of NMDA receptor (NMDAR)-mediated metaplasticity in the learning and memory impairment induced by ECS, as well as the neuroprotective effect of propofol and ketamine in depressive rats. Rats received ECS or ECS under anesthetics after chronic unpredictable mild stress procedure. Long-term potentiation (LTP) was tested by extracellular recording. LTD/LTP threshold was assessed by stimulation of different frequencies. Additionally, NMDAR-mediated field excitatory postsynaptic potential (fEPSP) and NMDAR input/output relationship were detected under hippocampal slice perfusion. Results showed that propofol or low-dose ketamine could partially alleviate ECS-induced LTP impairment, while propofol combined with low-dose ketamine almost reversed the LTP impairment. LTP under ECS was increased by stronger stimulation. ECS could up-regulated LTD/LTP threshold, while propofol or ketamine could down-regulate it. Moreover, ECS activated NMDAR, while propofol and ketamine could inhibit the activation of NMDAR. NMDAR input/output relationship decrease was induced by preconditioning (an analog of ECS in hippocampal slice), however, NMDAR input/output relationship increased by propofol or ketamine. In conclusion, ECS-induced cognitive impairment is caused by NMDAR-mediated metaplasticity via up-regulation of LTD/LTP threshold. Propofol or ketamine alleviates the cognitive impairment, possibly by down-regulating the threshold via inhibition of NMDAR activation induced by ECS.
Collapse
Affiliation(s)
- Li Ren
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuechao Hao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jie Deng
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qibin Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hengsheng Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dawei Liu
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Advanced Parental Age Impaired Fear Conditioning and Hippocampal LTD in Adult Female Rat Offspring. Neurochem Res 2017; 42:2869-2880. [PMID: 28536916 DOI: 10.1007/s11064-017-2306-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
Advanced maternal or paternal age is associated with increased risks of cognitive and emotional disorders. Chronic stress is also a common experience in human life that causes psychiatric diseases. However, the synergistic effects of these two factors on offspring are rarely studied. In the present study, the offspring of both young (3-4 months) and old (12-14 months) rat parents were given CUMS for 21 days at the age of 4 weeks. The effects of advanced parental age and chronic unpredictable mild stress (CUMS) on emotional and cognitive behaviors and the related cellular mechanisms were investigated by using behavioral and electrophysiological techniques. We found that CUMS decreased sucrose consumption, increased anxiety, and impaired learning and memory in offspring from both old and young breeders. However, advanced parental age impaired fear memory and spatial memory mainly in female offspring. The serum corticosterone of female offspring was lower than males, but advanced parental age significantly elevated serum corticosterone in female offspring in response to electrical foot shocks. In addition, hippocampal LTD was severely impaired in female offspring from older parents. Our results indicated that female offspring from older breeders might be more sensitive to stress, and the hippocampal function was more vulnerable. These results might provide experimental basis for the prevention and treatment of advanced parental age related psychiatric disorders in future.
Collapse
|
8
|
Propofol postsynaptically suppresses stellate neuron excitability in the entorhinal cortex by influencing the HCN and TREK-2 channels. Neurosci Lett 2016; 619:54-9. [DOI: 10.1016/j.neulet.2016.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 11/22/2022]
|
9
|
Wang W, Zhang Z, Shang J, Jiang ZZ, Wang S, Liu Y, Zhang LY. Activation of group I metabotropic glutamate receptors induces long-term depression in the hippocampal CA1 region of adult rats in vitro. Neurosci Res 2008; 62:43-50. [PMID: 18602428 DOI: 10.1016/j.neures.2008.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 06/05/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
Previous studies have implicated that long-term depression (LTD) was developmentally regulated since LTD can be readily induced by low frequency stimulation (LFS) in acute hippocampal slices prepared from juvenile but not adult animals. Here, we have examined the LTD induced by LFS (1Hz, 900 pulses) paired with a certain pattern at the Schaffer collateral-CAl synapse in adult hippocampal slices. We found that, in the 90-day-old rat hippocampus, LTD could be induced reliably by LFS paired with stronger stimulus intensity than that used during baseline recording. However, this synaptic depression could be completely abolished by application of metabotropic glutamate receptor (mGluR) antagonist (S)-amethyl-4-carboxyphenylglycine (MCPG) which had no effect on that induced by the same protocol in the 16-day-old rat hippocampus. Furthermore, preincubation with group I mGluR antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP) and (S)-2-methyl-4-carboxyphenylglycine (LY367385), also completely prevented the LFS-induced LTD. In contrast, group II mGluR antagonist (2S)-a-ethylglutamic acid (EGLU), N-methyl-d-aspartate (NMDA) receptor antagonist APV and voltage-gated calcium channel antagonist nimodipine had no effect on the LFS-induced LTD. Taken together, these observations suggest that LFS paired with strong stimulus strength can efficiently induce group I mGluR-dependent LTD in the adult hippocampal CA1 region, proving insight into the functional significance of hippocampal mGluR-mediated LTD in learning and memory.
Collapse
Affiliation(s)
- Wei Wang
- National Drug Screening Laboratory, New Drug Screening Center, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Lundeberg T, Lund I. Are reviews based on sham acupuncture procedures in fibromyalgia syndrome (FMS) valid? Acupunct Med 2008; 25:100-6. [PMID: 17906605 DOI: 10.1136/aim.25.3.100] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In recent reviews regarding the efficacy of acupuncture in fibromyalgia syndrome (FMS) it has been concluded that acupuncture has no specific effect since the control procedure (superficial needling and/or needling away from 'specific' points) had similar effects. These conclusions may be questioned since superficial needling and/or needling away from specific trigger points is not inert. Also, manual acupuncture or mild electroacupuncture (EA) may not be sufficient to activate the endogenous pain inhibiting system. Patients with FMS suffer from allodynia, fatigue and muscle ache, which is partly explained by peripheral and central sensitisation. Sensitisation results in augmented and altered stimulus responses whereby light stimulation of the skin has as strong an effect as regular needling on the pain inhibitory system in FMS. Central sensitisation in FMS is also associated with expanded receptive fields of central neurons resulting in a larger topographic distribution of the pain. This would suggest that control procedures using needling away from the 'specific site' might have as strong an effect as needling within the most painful area. Also, repeated nociceptive input from muscles (as obtained by de qi) results in expansion of receptive fields which in turn may result in activation of descending pain inhibition outside the stimulated myotome. Sensitisation to pain, such as in FMS, may also be related to abnormalities in descending efferent pathways. As there is likely to be an imbalance between excitatory and inhibitory systems in FMS, stronger stimulation may therefore be needed to activate the descending pain inhibitory system. In studies using mild manual acupuncture or weak EA stimulation optimal pain inhibition may therefore not have been obtained. When conducting studies on acupuncture, the clinical condition or syndrome needs to be taken into account and the control procedure designed accordingly.
Collapse
Affiliation(s)
- Thomas Lundeberg
- Rehabilitation Medicine, UniversityClinic, Danderyds Hospital, Stockholm, Sweden.
| | | |
Collapse
|
11
|
Sun H, Wang HL, Wang S. d-serine relieves chronic lead exposure-impaired long-term potentiation in the CA1 region of the rat hippocampus in vitro. Neurosci Lett 2007; 417:118-22. [PMID: 17408856 DOI: 10.1016/j.neulet.2007.01.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/19/2007] [Accepted: 01/28/2007] [Indexed: 11/28/2022]
Abstract
Chronic lead-exposure produces long-lasting astroglial morphological and functional changes, which disturb the neuronal functions in the hippocampus. It has been shown that glia-derived D-serine is an essential signal for N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity in the hippocampal CA1 region. However, the relationship between d-serine and the chronic lead exposure-induced deficit of synaptic plasticity is not clear. In the present study, the properties of D-serine on the chronic lead exposure-impaired synaptic plasticity in the rat hippocampal CA1 region were investigated with electrophysiological recording techniques in vitro. We found that 50 microM D-serine rescued the chronic lead exposure-induced deficit of long-term potentiation (LTP). However, this effect could be abolished by 7-chlorokynurenic acid (7-ClKY), which is a specific antagonist of the glycine-binding site of NMDARs. In contrast, D-serine had no effect on the NMDAR-independent LTP, which was induced in the mossy-CA3 synapses. In addition, we found that d-serine rescued the acute Pb(2+)-impaired NMDAR-mediated excitatory postsynaptic currents (EPSCs) partially. These findings demonstrate that d-serine relieves the chronic lead exposure-induced deficit of synaptic plasticity via NMDAR activation suggesting that administration of d-serine may be a potential therapeutic intervention to treat chronic lead exposure-impaired cognitive functions or affective disorders.
Collapse
Affiliation(s)
- Hao Sun
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui, PR China
| | | | | |
Collapse
|
12
|
Wang W, Wang H, Gong N, Xu TL. Changes of K+ -Cl- cotransporter 2 (KCC2) and circuit activity in propofol-induced impairment of long-term potentiation in rat hippocampal slices. Brain Res Bull 2006; 70:444-9. [PMID: 17027780 DOI: 10.1016/j.brainresbull.2006.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/02/2006] [Accepted: 07/03/2006] [Indexed: 11/16/2022]
Abstract
Enhancing inhibition via gamma-aminobutyric acid type A (GABA(A)) receptors contributes to anesthetic-induced impairment of long-term potentiation (LTP) of excitatory synaptic transmission, which may account for general anesthesia-associated memory impairment (amnesia). The neuron-specific K+ -Cl- cotransporter 2 (KCC2) is necessary for fast synaptic inhibition via maintaining the low intracellular chloride concentration required for the hyperpolarizing actions of GABA via GABA(A) receptors. To explore a possible role of KCC2-dependent inhibition in anesthetic-induced impairment of LTP, we used field excitatory postsynaptic potentials (fEPSP) recording and immunoblotting to study the effect of propofol on LTP maintenance and KCC2 expression in CA1 region of rat hippocampal slices. We found that propofol (30 microM) not only impaired LTP expression but also prevented LTP-accompanied downregulation of KCC2 without affecting the basal transmission of glutamatergic synapses. Moreover, the recurrent inhibition in hippocampal slices was enhanced by propofol. These propofol-induced effects were completely abolished by picrotoxin, a specific GABA(A) receptor-chloride channel blocker. Thus, enhancement of GABAergic inhibition and suppression of neuronal excitability may account for the sustained expression of KCC2 and the impairment of LTP by propofol. Together, this study supports a novel role for KCC2 in LTP expression and gives hints to a molecular mechanism, by which anesthetics might cause impairment of LTP.
Collapse
Affiliation(s)
- Wei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | |
Collapse
|
13
|
Cui M, Yang Y, Yang J, Zhang J, Han H, Ma W, Li H, Mao R, Xu L, Hao W, Cao J. Enriched environment experience overcomes the memory deficits and depressive-like behavior induced by early life stress. Neurosci Lett 2006; 404:208-12. [PMID: 16790315 DOI: 10.1016/j.neulet.2006.05.048] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 05/23/2006] [Accepted: 05/26/2006] [Indexed: 11/25/2022]
Abstract
Stress in early life is believed to cause cognitive and affective disorders, and to disrupt hippocampal synaptic plasticity in adolescence into adult, but it is unclear whether exposure to enriched environment (EE) can overcome these effects. Here, we reported that housing rats in cages with limited nesting/bedding materials on postnatal days 2-21 reduced body weight gain, and this type of early life stress impaired spatial learning and memory of the Morris water maze and increased depressive-like behavior of the forced swim test in young adult rats (postnatal days 53-57). Early life stress also impaired long-term potentiation in hippocampal CA1 area of slices of young adult rats. Remarkably, EE experience on postnatal days 22-52 had no effect on spatial learning/memory and depressive-like behavior, but it significantly facilitated LTP in control rats, and completely overcame the effects of early life stress on young adult rats. These findings suggest that EE experience may be useful for clinical intervention in preventing cognitive and affective disorders during development.
Collapse
Affiliation(s)
- Minghu Cui
- Mental Health Institute and WHO Collaborating Center for Psychosocial Factors, Drug Abuse and Health, the 2nd Hospital of Central South University, Changsha, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang LH, Xu L, Xu TL. Glycine receptor activation regulates short-term plasticity in CA1 area of hippocampal slices of rats. Biochem Biophys Res Commun 2006; 344:721-6. [PMID: 16631121 DOI: 10.1016/j.bbrc.2006.03.198] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 03/28/2006] [Indexed: 11/29/2022]
Abstract
Functional glycine receptors (GlyRs) are enriched in the hippocampus, but their roles in synaptic transmission are unclear. In this study, we examined the effect of GlyR activation on paired-pulse stimulation of the whole-cell postsynaptic currents (PSCs) in the Schaffer-CA1 synapses in rat hippocampal slices. Bath application of glycine reduced the amplitude of PSCs, accompanied by an increase in holding current and resting conductance. Moreover, glycine application increased the paired-pulse ratio (PPR) of PSCs significantly, an effect largely abolished by the GlyR specific antagonist strychnine. Interestingly, glycine application had no significant effect on either the amplitude or the PPR of excitatory postsynaptic currents (EPSCs). Our findings suggest that GlyR activation regulates hippocampal short-term plasticity by altering GABAergic neurotransmission.
Collapse
Affiliation(s)
- Long-Hua Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | |
Collapse
|
15
|
Li H, Zhang J, Xiong W, Xu T, Cao J, Xu L. Long-term depression in rat CA1-subicular synapses depends on the G-protein coupled mACh receptors. Neurosci Res 2005; 52:287-94. [PMID: 15893398 DOI: 10.1016/j.neures.2005.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 03/14/2005] [Accepted: 04/07/2005] [Indexed: 11/24/2022]
Abstract
The subiculum, which is the primary target of CA1 pyramidal neurons and sending efferent fibres to many brain regions, serves as a hippocampal interface in the neural information processes between hippocampal formation and neocortex. Long-term depression (LTD) is extensively studied in the hippocampus, but not at the CA1-subicular synaptic transmission. Using whole-cell EPSC recordings in the brain slices of young rats, we demonstrated that the pairing protocols of low frequency stimulation (LFS) at 3 Hz and postsynaptic depolarization of -50 mV elicited a reliable LTD in the subiculum. The LTD did not cause the changes of the paired-pulse ratio of EPSC. Furthermore, it did not depend on either NMDA receptors or voltage-gated calcium channels (VGCCs). Bath application of the G-protein coupled muscarinic acetylcholine receptors (mAChRs) antagonists, atropine or scopolamine, blocked the LTD, suggesting that mAChRs are involved in the LTD. It was also completely blocked by either the Ca2+ chelator BAPTA or the G-protein inhibitor GDP-beta-S in the intracellular solution. This type of LTD in the subiculum may play a particular role in the neural information processing between the hippocampus and neocortex.
Collapse
Affiliation(s)
- Hongbin Li
- Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Zhang J, Yang Y, Li H, Cao J, Xu L. Amplitude/frequency of spontaneous mEPSC correlates to the degree of long-term depression in the CA1 region of the hippocampal slice. Brain Res 2005; 1050:110-7. [PMID: 15978556 DOI: 10.1016/j.brainres.2005.05.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 05/11/2005] [Accepted: 05/13/2005] [Indexed: 11/21/2022]
Abstract
Prior synaptic or cellular activity influences degree or threshold for subsequent induction of synaptic plasticity, a process known as metaplasticity. Thus, the continual synaptic activity, spontaneous miniature excitatory synaptic current (mEPSC) may correlate to the induction of long-term depression (LTD). Here, we recorded whole-cell EPSC and mEPSC alternately in the Schaffer-CA1 synapses in brain slice of young rats, and found that this recording configuration affected neither EPSC nor mEPSC. Low frequency stimulation (LFS) induced variable magnitudes of LTD. Remarkably, larger magnitudes of LTD were significantly correlated to smaller amplitude/lower frequency of the basal mEPSC. Furthermore, under the conditions reduced amplitude/frequency of the basal mEPSC by exposure to behavioral stress immediately before slice preparation or low concentration of calcium in bath solution, the magnitudes of LTD were still inversely correlated to mEPSC amplitude/frequency. These new findings suggest that spontaneous mEPSC may reflect functional and/or structural aspects of the synapses, the synaptic history ongoing metaplasticity.
Collapse
Affiliation(s)
- Jichuan Zhang
- Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, PR China
| | | | | | | | | |
Collapse
|