1
|
Hu S, Hu Y, Mei H, Li J, Xuan W, Jeyaraj A, Zhao Z, Zhao Y, Han R, Chen X, Li X. Genome-wide analysis of long non-coding RNAs (lncRNAs) in tea plants ( Camellia sinensis) lateral roots in response to nitrogen application. FRONTIERS IN PLANT SCIENCE 2023; 14:1080427. [PMID: 36909382 PMCID: PMC9998519 DOI: 10.3389/fpls.2023.1080427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Tea (Camellia sinensis) is one of the significant cash crops in China. As a leaf crop, nitrogen supply can not only increase the number of new shoots and leaves but also improve the tenderness of the former. However, a conundrum remains in science, which is the molecular mechanism of nitrogen use efficiency, especially long non-coding RNA (lncRNA). In this study, a total of 16,452 lncRNAs were identified through high-throughput sequencing analysis of lateral roots under nitrogen stress and control conditions, of which 9,451 were differentially expressed lncRNAs (DE-lncRNAs). To figure out the potential function of nitrogen-responsive lncRNAs, co-expression clustering was employed between lncRNAs and coding genes. KEGG enrichment analysis revealed nitrogen-responsive lncRNAs may involve in many biological processes such as plant hormone signal transduction, nitrogen metabolism and protein processing in endoplasmic reticulum. The expression abundance of 12 DE-lncRNAs were further verified by RT-PCR, and their expression trends were consistent with the results of RNA-seq. This study expands the research on lncRNAs in tea plants, provides a novel perspective for the potential regulation of lncRNAs on nitrogen stress, and valuable resources for further improving the nitrogen use efficiency of tea plants.
Collapse
Affiliation(s)
- Shunkai Hu
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yimeng Hu
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Huiling Mei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jianjie Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Xuan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Anburaj Jeyaraj
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhen Zhao
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuxin Zhao
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rui Han
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xuan Chen
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xinghui Li
- International Institute of Tea Industry Innovation for “One Belt, One Road”, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Yang Y, Huang J, Sun Q, Wang J, Huang L, Fu S, Qin S, Xie X, Ge S, Li X, Cheng Z, Wang X, Chen H, Zheng B, He Y. microRNAs: Key Players in Plant Response to Metal Toxicity. Int J Mol Sci 2022; 23:ijms23158642. [PMID: 35955772 PMCID: PMC9369385 DOI: 10.3390/ijms23158642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Environmental metal pollution is a common problem threatening sustainable and safe crop production. Heavy metals (HMs) cause toxicity by targeting key molecules and life processes in plant cells. Plants counteract excess metals in the environment by enhancing defense responses, such as metal chelation, isolation to vacuoles, regulating metal intake through transporters, and strengthening antioxidant mechanisms. In recent years, microRNAs (miRNAs), as a small non-coding RNA, have become the central regulator of a variety of abiotic stresses, including HMs. With the introduction of the latest technologies such as next-generation sequencing (NGS), more and more miRNAs have been widely recognized in several plants due to their diverse roles. Metal-regulated miRNAs and their target genes are part of a complex regulatory network. Known miRNAs coordinate plant responses to metal stress through antioxidant functions, root growth, hormone signals, transcription factors (TF), and metal transporters. This article reviews the research progress of miRNAs in the stress response of plants to the accumulation of HMs, such as Cu, Cd, Hg, Cr, and Al, and the toxicity of heavy metal ions.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Jiu Huang
- School of Environment Science and Spatial Informaftics, China University of Mining and Technology, Xuzhou 221116, China;
| | - Qiumin Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Jingqi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Lichao Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Siyi Fu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Sini Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Xiaoting Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Sisi Ge
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Xiang Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Zhuo Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
| | - Houming Chen
- Max Planck Institute for Biology, Max Planck Ring 5, 72076 Tübingen, Germany;
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
- Correspondence: (B.Z.); (Y.H.); Tel./Fax: +86-0571-8663-3652 (Y.H.)
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (Q.S.); (J.W.); (L.H.); (S.F.); (S.Q.); (X.X.); (S.G.); (X.L.); (Z.C.); (X.W.)
- Correspondence: (B.Z.); (Y.H.); Tel./Fax: +86-0571-8663-3652 (Y.H.)
| |
Collapse
|
3
|
He Q, Jing H, Liaw L, Gower L, Vary C, Hua S, Yang X. Suppression of Spry1 inhibits triple-negative breast cancer malignancy by decreasing EGF/EGFR mediated mesenchymal phenotype. Sci Rep 2016; 6:23216. [PMID: 26976794 PMCID: PMC4791662 DOI: 10.1038/srep23216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 03/02/2016] [Indexed: 01/22/2023] Open
Abstract
Sprouty (Spry) proteins have been implicated in cancer progression, but their role in triple-negative breast cancer (TNBC), a subtype of lethal and aggressive breast cancer, is unknown. Here, we reported that Spry1 is significantly expressed in TNBC specimen and MDA-MB-231 cells. To understand Spry1 regulation of signaling events controlling breast cancer phenotype, we used lentiviral delivery of human Spry1 shRNAs to suppress Spry1 expression in MDA-MB-231, an established TNBC cell line. Spry1 knockdown MDA-MB-231 cells displayed an epithelial phenotype with increased membrane E-cadherin expression. Knockdown of Spry1 impaired MDA-MB-231 cell migration, Matrigel invasion, and anchorage-dependent and -independent growth. Tumor xenografts originating from Spry1 knockdown MDA-MB-231 cells grew slower, had increased E-cadherin expression, and yielded fewer lung metastases compared to control. Furthermore, suppressing Spry1 in MDA-MB-231 cells impaired the induction of Snail and Slug expression by EGF, and this effect was associated with increased EGFR degradation and decreased EGFR/Grb2/Shp2/Gab1 signaling complex formation. The same phenotype was also observed in the TNBC cell line MDA-MB-157. Together, our results show that unlike in some tumors, where Spry may mediate tumor suppression, Spry1 plays a selective role in at least a subset of TNBC to promote the malignant phenotype via enhancing EGF-mediated mesenchymal phenotype.
Collapse
Affiliation(s)
- Qing He
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Hongyu Jing
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA.,Department of Respiratory Medicine, The First Hospital of Jinlin University, Changchun, China
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Lindsey Gower
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Calvin Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Hospital of Jinlin University, Changchun, China
| | - Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| |
Collapse
|
4
|
Montagnani A. Bone anabolics in osteoporosis: Actuality and perspectives. World J Orthop 2014; 5:247-54. [PMID: 25035827 PMCID: PMC4095017 DOI: 10.5312/wjo.v5.i3.247] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 05/19/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Vertebral and nonvertebral fractures prevention is the main goal for osteoporosis therapy by inhibiting bone resorption and/or stimulating bone formation. Antiresorptive drugs decrease the activation frequency, thereby determining a secondary decrease in bone formation rate and a low bone turnover. Bisphosphonates are today's mainstay among antiresorptive treatment of osteoporosis. Also, oral selective estrogen receptor modulators and recently denosumab have a negative effect on bone turnover. Agents active on bone formation are considered a better perspective in the treatment of severe osteoporosis. Recombinant-human parathyroid hormone (PTH) has showed to increase bone formation and significantly decrease vertebral fractures in severe patients, but with a modest effect on nonvertebral fractures. The study of Wnt signaling pathway, that induces prevalently an osteoblastic activity, opens large possibilities to antagonists of Wnt-inhibitors, such as sclerostin antibodies and dickkopf-1 antagonists, with potential effects not only on trabecular bone but also on cortical bone.
Collapse
|
5
|
Onishi H, Katano M. Hedgehog signaling pathway as a new therapeutic target in pancreatic cancer. World J Gastroenterol 2014; 20:2335-2342. [PMID: 24605030 PMCID: PMC3942836 DOI: 10.3748/wjg.v20.i9.2335] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/11/2013] [Accepted: 01/08/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive and difficult cancers to treat. Despite numerous research efforts, limited success has been achieved in the therapeutic management of patients with this disease. In the current review, we focus on one component of morphogenesis signaling, Hedgehog (Hh), with the aim of developing novel, effective therapies for the treatment of pancreatic cancer. Hh signaling contributes to the induction of a malignant phenotype in pancreatic cancer and is responsible for maintaining pancreatic cancer stem cells. In addition, we propose a novel concept linking Hh signaling and tumor hypoxic conditions, and discuss the effects of Hh inhibitors in clinical trials. The Hh signaling pathway may represent a potential therapeutic target for patients with refractory pancreatic cancer.
Collapse
|
6
|
Su M, Wen B, Hu FL, Liu JY. Variance of crypt architecture and E-cadherin and PAR-3 expression in tissues at different distances from colorectal cancer lesions. Shijie Huaren Xiaohua Zazhi 2014; 22:444-449. [DOI: 10.11569/wcjd.v22.i3.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the variation of crypt architecture, expression and distribution of E-cadherin and PAR-3 expression in tissues at different distances from colorectal cancer lesions.
METHODS: Tissue samples at 10, 5 and 2 cm from the tumor lesion were collected. The variation of crypt architecture was observed among the three groups. E-cadherin and PAR-3 expression was detected by immunohistochemistry and Western blot.
RESULTS: With the distance getting closer to the tumor lesion, crypt architecture was destroyed more and more obviously. Cell crypts were irregularly arranged, and some of them disappeared. With the distance getting closer to the tumor lesion, the expression of E-cadherin and PAR-3 decreased progressively, and E-cadherin and PAR-3 translocated gradually from the plasma membrane to the cytoplasm.
CONCLUSION: With the distance getting closer to the tumor lesion, crypt architecture was destroyed more and more obviously, and some crypts disappeared; E-cadherin and PAR-3 expression in crypt epithelial cells decreased progressively and gradually translocated from the plasma membrane to cytoplasm.
Collapse
|
7
|
Chen XY, Zhao K. Progress in understanding the relationship between Lgr5 and colorectal cancer. Shijie Huaren Xiaohua Zazhi 2013; 21:673-678. [DOI: 10.11569/wcjd.v21.i8.673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), a member of the G protein-coupled receptor family, contains 17 leucine-rich repeats and N- and C-terminal cysteine-rich flanking domains. Lgr5 is a marker for stem cells in the stomach, small intestine, colon, and hair follicles. Recently, Lgr5 has been identified as a target of Wnt signaling. As a potential marker for colorectal cancer stem cells, Lgr5 might be responsible for the initiation and progression of colorectal cancer. In this article we review recent progress in understanding the relationship between Lgr5 and colorectal cancer.
Collapse
|