1
|
Chou WC, Cheng AL, Brotto M, Chuang CY. Visual gene-network analysis reveals the cancer gene co-expression in human endometrial cancer. BMC Genomics 2014; 15:300. [PMID: 24758163 PMCID: PMC4234489 DOI: 10.1186/1471-2164-15-300] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/04/2014] [Indexed: 11/10/2022] Open
Abstract
Background Endometrial cancers (ECs) are the most common form of gynecologic malignancy. Recent studies have reported that ECs reveal distinct markers for molecular pathogenesis, which in turn is linked to the various histological types of ECs. To understand further the molecular events contributing to ECs and endometrial tumorigenesis in general, a more precise identification of cancer-associated molecules and signaling networks would be useful for the detection and monitoring of malignancy, improving clinical cancer therapy, and personalization of treatments. Results ECs-specific gene co-expression networks were constructed by differential expression analysis and weighted gene co-expression network analysis (WGCNA). Important pathways and putative cancer hub genes contribution to tumorigenesis of ECs were identified. An elastic-net regularized classification model was built using the cancer hub gene signatures to predict the phenotypic characteristics of ECs. The 19 cancer hub gene signatures had high predictive power to distinguish among three key principal features of ECs: grade, type, and stage. Intriguingly, these hub gene networks seem to contribute to ECs progression and malignancy via cell-cycle regulation, antigen processing and the citric acid (TCA) cycle. Conclusions The results of this study provide a powerful biomarker discovery platform to better understand the progression of ECs and to uncover potential therapeutic targets in the treatment of ECs. This information might lead to improved monitoring of ECs and resulting improvement of treatment of ECs, the 4th most common of cancer in women.
Collapse
Affiliation(s)
| | | | | | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
2
|
Sengupta A, Mense SM, Lan C, Zhou M, Mauro RE, Kellerman L, Bentsman G, Volsky DJ, Louis ED, Graziano JH, Zhang L. Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology 2007; 28:478-89. [PMID: 17175027 PMCID: PMC2041834 DOI: 10.1016/j.neuro.2006.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 10/24/2006] [Accepted: 10/24/2006] [Indexed: 12/31/2022]
Abstract
Exposure of adult humans to manganese (Mn) has long been known to cause neurotoxicity. Recent evidence also suggests that exposure of children to Mn is associated with developmental neurotoxicity. Astrocytes are critical for the proper functioning of the nervous system, and they play active roles in neurogenesis, synaptogenesis and synaptic neurotransmission. In this report, to help elucidate the molecular events underlying Mn neurotoxicity, we systematically identified the molecular targets of Mn in primary human astrocytes at a genome-wide level, by using microarray gene expression profiling and computational data analysis algorithms. We found that Mn altered the expression of diverse genes ranging from those encoding cytokines and transporters to signal transducers and transcriptional regulators. Particularly, 28 genes encoding proinflammatory chemokines, cytokines and related functions were up-regulated, whereas 15 genes encoding functions involved in DNA replication and repair and cell cycle checkpoint control were down-regulated. Consistent with the increased expression of proinflammatory factors, analysis of common regulators revealed that 16 targets known to be positively affected by the interferon-gamma signaling pathway were up-regulated by Mn(2+). In addition, 68 genes were found to be similarly up- or down-regulated by both Mn(2+) and hypoxia. These results from genomic analysis are further supported by data from real-time RT-PCR, Western blotting, flow cytometric and toxicological analyses. Together, these analyses show that Mn(2+) selectively affects cell cycle progression, the expression of hypoxia-responsive genes, and the expression of proinflammatory factors in primary human astrocytes. These results provide important insights into the molecular mechanisms underlying Mn neurotoxicity.
Collapse
Affiliation(s)
- Amitabha Sengupta
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| | - Sarah M. Mense
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| | - Changgui Lan
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| | - Mei Zhou
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| | - Rory E. Mauro
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| | - Lisa Kellerman
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| | - Galina Bentsman
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center and College of Physicians and Surgeons, Columbia University, New York, New York 10019
| | - David J. Volsky
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center and College of Physicians and Surgeons, Columbia University, New York, New York 10019
| | - Elan D. Louis
- Gertrude H. Sergievsky Center and the Department of Neurology, Columbia University, New York 10032
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| | - Li Zhang
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 60 Haven Avenue, B-106, New York, New York 10032
| |
Collapse
|
3
|
Guo C, Wu G, Chin JL, Bauman G, Moussa M, Wang F, Greenberg NM, Taylor SS, Xuan JW. Bub1 up-regulation and hyperphosphorylation promote malignant transformation in SV40 tag-induced transgenic mouse models. Mol Cancer Res 2007; 4:957-69. [PMID: 17189386 DOI: 10.1158/1541-7786.mcr-06-0168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rodents do not naturally develop prostate cancer. Currently, most widely used genetically engineered mouse prostate cancer models use SV40 T/tag oncogene. To understand the mechanism underlying prostate cancer development in transgenic and knock-in SV40 Tag mouse models, we did cDNA microarray analyses, comparing gene expression profiles of prostate cancer tissues from early-, late-, and advance-stage androgen-independent prostate cancers. Of the 67 genes that were up-regulated by > or = 10-fold, 40 are known to be required for chromosome stability. In particular, the spindle checkpoint component Bub1 was persistently up-regulated from early to advanced androgen-independent prostate cancer lesions. Significantly, Bub1, which is required for accurate chromosome segregation during mitosis, has recently been reported to bind SV40 Tag. Consistent with a spindle checkpoint defect, flow cytometry experiments indicate that advanced androgen-independent prostate cancer tumors exhibit aneuploidy, along with up-regulation of levels of both Bub1 mRNA and Bub1 protein or hyperphosphorylation. Importantly, up-regulation and hyperphosphorylation of Bub1 were also observed in established human prostate cancer cell lines and in clinical studies. Furthermore, analysis of human prostate cancer lines showed impaired spindle checkpoint function and endoreduplication following exposure to spindle toxins. Small interfering RNA-mediated repression of Bub1 in the human prostate cancer line PC-3 restrained cell proliferation, an effect mimicked by inhibition of mitogen-activated protein kinase, an upstream activator of Bub1. Thus, by perturbing Bub1 function, our observations suggest a new mechanism whereby the SV40 Tag oncoprotein promotes chromosomal instability and aneuploidy in transgenic mouse prostate cancer models. Whereas the exact details of this mechanism remain unclear, our novel findings raise the possibility of exploiting Bub1 as a new therapeutic target in the treatment of prostate cancer, the most common cancer in adult men in North America.
Collapse
Affiliation(s)
- Conghui Guo
- Department of Surgery, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhang T, Stilwell JL, Gerion D, Ding L, Elboudwarej O, Cooke PA, Gray JW, Alivisatos AP, Chen FF. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. NANO LETTERS 2006; 6:800-8. [PMID: 16608287 PMCID: PMC2730586 DOI: 10.1021/nl0603350] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Quantum dots (Qdots) are now used extensively for labeling in biomedical research, and this use is predicted to grow because of their many advantages over alternative labeling methods. Uncoated Qdots made of core/shell CdSe/ZnS are toxic to cells because of the release of Cd2+ ions into the cellular environment. This problem has been partially overcome by coating Qdots with polymers, poly(ethylene glycol) (PEG), or other inert molecules. The most promising coating to date, for reducing toxicity, appears to be PEG. When PEG-coated silanized Qdots (PEG-silane-Qdots) are used to treat cells, toxicity is not observed, even at dosages above 10-20 nM, a concentration inducing death when cells are treated with polymer or mercaptoacid coated Qdots. Because of the importance of Qdots in current and future biomedical and clinical applications, we believe it is essential to more completely understand and verify this negative global response from cells treated with PEG-silane-Qdots. Consequently, we examined the molecular and cellular response of cells treated with two different dosages of PEG-silane-Qdots. Human fibroblasts were exposed to 8 and 80 nM of these Qdots, and both phenotypic as well as whole genome expression measurements were made. PEG-silane-Qdots did not induce any statistically significant cell cycle changes and minimal apoptosis/necrosis in lung fibroblasts (IMR-90) as measured by high content image analysis, regardless of the treatment dosage. A slight increase in apoptosis/necrosis was observed in treated human skin fibroblasts (HSF-42) at both the low and the high dosages. We performed genome-wide expression array analysis of HSF-42 exposed to doses 8 and 80 nM to link the global cell response to a molecular and genetic phenotype. We used a gene array containing approximately 22,000 total probe sets, containing 18,400 probe sets from known genes. Only approximately 50 genes (approximately 0.2% of all the genes tested) exhibited a statistically significant change in expression level of greater than 2-fold. Genes activated in treated cells included those involved in carbohydrate binding, intracellular vesicle formation, and cellular response to stress. Conversely, PEG-silane-Qdots induce a down-regulation of genes involved in controlling the M-phase progression of mitosis, spindle formation, and cytokinesis. Promoter analysis of these results reveals that expression changes may be attributed to the down-regulation of FOXM and BHLB2 transcription factors. Remarkably, PEG-silane-Qdots, unlike carbon nanotubes, do not activate genes indicative of a strong immune and inflammatory response or heavy-metal-related toxicity. The experimental evidence shows that CdSe/ZnS Qdots, if appropriately protected, induce negligible toxicity to the model cell system studied here, even when exposed to high dosages. This study indicates that PEG-coated silanized Qdots pose minimal impact to cells and are a very promising alternative to uncoated Qdots.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fanqing Frank Chen
- To whom correspondence should be addressed: Life Sciences Division, Lawrence, Berkley National Laboratory, MS 977R0225A, 1 Cyclotron Rd, Berkeley, CA 94720. Phone: (510) 495-2444. FAX: (510) 486-5586. E-mail:
| |
Collapse
|
5
|
Simply effective. Nat Rev Mol Cell Biol 2005. [DOI: 10.1038/nrm1561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|