1
|
Tang X, Wei W, Snowball JM, Nakayasu ES, Bell SM, Ansong C, Lin X, Whitsett JA. EMC3 regulates mesenchymal cell survival via control of the mitotic spindle assembly. iScience 2022; 26:105667. [PMID: 36624844 PMCID: PMC9823123 DOI: 10.1016/j.isci.2022.105667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic cells transit through the cell cycle to produce two daughter cells. Dysregulation of the cell cycle leads to cell death or tumorigenesis. Herein, we found a subunit of the ER membrane complex, EMC3, as a key regulator of cell cycle. Conditional deletion of Emc3 in mouse embryonic mesoderm led to reduced size and patterning defects of multiple organs. Emc3 deficiency impaired cell proliferation, causing spindle assembly defects, chromosome mis-segregation, cell cycle arrest at G2/M, and apoptosis. Upon entry into mitosis, mesenchymal cells upregulate EMC3 protein levels and localize EMC3 to the mitotic centrosomes. Further analysis indicated that EMC3 works together with VCP to tightly regulate the levels and activity of Aurora A, an essential factor for centrosome function and mitotic spindle assembly: while overexpression of EMC3 or VCP degraded Aurora A, their loss led to increased Aurora A stability but reduced Aurora A phosphorylation in mitosis.
Collapse
Affiliation(s)
- Xiaofang Tang
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA,Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, 2nd Nanjiang Rd, Nansha District, Guangzhou 511458, China
| | - Wei Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, No. 2005 Songhu Rd, Shanghai 200438, China
| | - John M. Snowball
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Sheila M. Bell
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| | - Xinhua Lin
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, 2nd Nanjiang Rd, Nansha District, Guangzhou 511458, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, No. 2005 Songhu Rd, Shanghai 200438, China,Corresponding author
| | - Jeffrey A. Whitsett
- Perinatal Institute, Divisions of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7029, Cincinnati, OH 45229, USA,Corresponding author
| |
Collapse
|
2
|
Divekar NS, Davis-Roca AC, Zhang L, Dernburg AF, Wignall SM. A degron-based strategy reveals new insights into Aurora B function in C. elegans. PLoS Genet 2021; 17:e1009567. [PMID: 34014923 PMCID: PMC8172070 DOI: 10.1371/journal.pgen.1009567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/02/2021] [Accepted: 04/28/2021] [Indexed: 01/11/2023] Open
Abstract
The widely conserved kinase Aurora B regulates important events during cell division. Surprisingly, recent work has uncovered a few functions of Aurora-family kinases that do not require kinase activity. Thus, understanding this important class of cell cycle regulators will require strategies to distinguish kinase-dependent from independent functions. Here, we address this need in C. elegans by combining germline-specific, auxin-induced Aurora B (AIR-2) degradation with the transgenic expression of kinase-inactive AIR-2. Through this approach, we find that kinase activity is essential for AIR-2’s major meiotic functions and also for mitotic chromosome segregation. Moreover, our analysis revealed insight into the assembly of the ring complex (RC), a structure that is essential for chromosome congression in C. elegans oocytes. AIR-2 localizes to chromosomes and recruits other components to form the RC. However, we found that while kinase-dead AIR-2 could load onto chromosomes, other components were not recruited. This failure in RC assembly appeared to be due to a loss of RC SUMOylation, suggesting that there is crosstalk between SUMOylation and phosphorylation in building the RC and implicating AIR-2 in regulating the SUMO pathway in oocytes. Similar conditional depletion approaches may reveal new insights into other cell cycle regulators. During cell division, chromosomes must be accurately partitioned to ensure the proper distribution of genetic material. In mitosis, chromosomes are duplicated once and then divided once, generating daughter cells with the same amount of genetic material as the original cell. Conversely, during meiosis chromosomes are duplicated once and divided twice, to cut the chromosome number in half to generate eggs and sperm. One important protein that is required for both mitotic and meiotic chromosome segregation is the kinase Aurora B, which phosphorylates a variety of other cell division proteins. However, previous research has shown that some kinases have functions that are independent of their ability to phosphorylate other proteins. Thus, fully understanding how Aurora B regulates cell division requires methods to test whether its various functions require kinase activity. We designed and implemented such a strategy in the model organism C. elegans, by depleting Aurora B from meiotically and mitotically-dividing cells, leaving in place a kinase-inactive version. This work has lent insight into how Aurora B regulates cell division in C. elegans, and also serves as a proof of principle for our approach, which can now be applied to study other essential cell division kinases.
Collapse
Affiliation(s)
- Nikita S. Divekar
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Amanda C. Davis-Roca
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Sarah M. Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
3
|
Prattes M, Lo YH, Bergler H, Stanley RE. Shaping the Nascent Ribosome: AAA-ATPases in Eukaryotic Ribosome Biogenesis. Biomolecules 2019; 9:E715. [PMID: 31703473 PMCID: PMC6920918 DOI: 10.3390/biom9110715] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
AAA-ATPases are molecular engines evolutionarily optimized for the remodeling of proteins and macromolecular assemblies. Three AAA-ATPases are currently known to be involved in the remodeling of the eukaryotic ribosome, a megadalton range ribonucleoprotein complex responsible for the translation of mRNAs into proteins. The correct assembly of the ribosome is performed by a plethora of additional and transiently acting pre-ribosome maturation factors that act in a timely and spatially orchestrated manner. Minimal disorder of the assembly cascade prohibits the formation of functional ribosomes and results in defects in proliferation and growth. Rix7, Rea1, and Drg1, which are well conserved across eukaryotes, are involved in different maturation steps of pre-60S ribosomal particles. These AAA-ATPases provide energy for the efficient removal of specific assembly factors from pre-60S particles after they have fulfilled their function in the maturation cascade. Recent structural and functional insights have provided the first glimpse into the molecular mechanism of target recognition and remodeling by Rix7, Rea1, and Drg1. Here we summarize current knowledge on the AAA-ATPases involved in eukaryotic ribosome biogenesis. We highlight the latest insights into their mechanism of mechano-chemical complex remodeling driven by advanced cryo-EM structures and the use of highly specific AAA inhibitors.
Collapse
Affiliation(s)
- Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010 Graz, Austria;
| | - Yu-Hua Lo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, Durham, NC 27709, USA;
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010 Graz, Austria;
| | - Robin E. Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, Durham, NC 27709, USA;
| |
Collapse
|
4
|
Mutations in SPATA5 Are Associated with Microcephaly, Intellectual Disability, Seizures, and Hearing Loss. Am J Hum Genet 2015; 97:457-64. [PMID: 26299366 DOI: 10.1016/j.ajhg.2015.07.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/20/2015] [Indexed: 12/30/2022] Open
Abstract
Using whole-exome sequencing, we have identified in ten families 14 individuals with microcephaly, developmental delay, intellectual disability, hypotonia, spasticity, seizures, sensorineural hearing loss, cortical visual impairment, and rare autosomal-recessive predicted pathogenic variants in spermatogenesis-associated protein 5 (SPATA5). SPATA5 encodes a ubiquitously expressed member of the ATPase associated with diverse activities (AAA) protein family and is involved in mitochondrial morphogenesis during early spermatogenesis. It might also play a role in post-translational modification during cell differentiation in neuronal development. Mutations in SPATA5 might affect brain development and function, resulting in microcephaly, developmental delay, and intellectual disability.
Collapse
|
5
|
Lucena R, Dephoure N, Gygi SP, Kellogg DR, Tallada VA, Daga RR, Jimenez J. Nucleocytoplasmic transport in the midzone membrane domain controls yeast mitotic spindle disassembly. ACTA ACUST UNITED AC 2015; 209:387-402. [PMID: 25963819 PMCID: PMC4427787 DOI: 10.1083/jcb.201412144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the membrane domain surrounding the mitotic spindle midzone promotes spindle midzone dissolution in fission yeast. During each cell cycle, the mitotic spindle is efficiently assembled to achieve chromosome segregation and then rapidly disassembled as cells enter cytokinesis. Although much has been learned about assembly, how spindles disassemble at the end of mitosis remains unclear. Here we demonstrate that nucleocytoplasmic transport at the membrane domain surrounding the mitotic spindle midzone, here named the midzone membrane domain (MMD), is essential for spindle disassembly in Schizosaccharomyces pombe cells. We show that, during anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the MMD allows this disassembly factor to localize at the spindle midzone, thereby promoting spindle midzone dissolution. Our findings illustrate how a separate membrane compartment supports spindle disassembly in the closed mitosis of fission yeast.
Collapse
Affiliation(s)
- Rafael Lucena
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Noah Dephoure
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Douglas R Kellogg
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Victor A Tallada
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| | - Juan Jimenez
- Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide/Consejo Superior de Investigaciones Cientificas, 41013 Sevilla, Spain
| |
Collapse
|
6
|
Pelisch F, Sonneville R, Pourkarimi E, Agostinho A, Blow JJ, Gartner A, Hay RT. Dynamic SUMO modification regulates mitotic chromosome assembly and cell cycle progression in Caenorhabditis elegans. Nat Commun 2014; 5:5485. [PMID: 25475837 PMCID: PMC4268692 DOI: 10.1038/ncomms6485] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/06/2014] [Indexed: 11/08/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO), initially characterized as a suppressor of a mutation in the gene encoding the centromeric protein MIF2, is involved in many aspects of cell cycle regulation. The dynamics of conjugation and deconjugation and the role of SUMO during the cell cycle remain unexplored. Here we used Caenorhabditis elegans to establish the contribution of SUMO to a timely and accurate cell division. Chromatin-associated SUMO conjugates increase during metaphase but decrease rapidly during anaphase. Accumulation of SUMO conjugates on the metaphase plate and proper chromosome alignment depend on the SUMO E2 conjugating enzyme UBC-9 and SUMO E3 ligase PIAS(GEI-17). Deconjugation is achieved by the SUMO protease ULP-4 and is crucial for correct progression through the cell cycle. Moreover, ULP-4 is necessary for Aurora B(AIR-2) extraction from chromatin and relocation to the spindle mid-zone. Our results show that dynamic SUMO conjugation plays a role in cell cycle progression.
Collapse
Affiliation(s)
- Federico Pelisch
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Remi Sonneville
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ehsan Pourkarimi
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ana Agostinho
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
7
|
Torrente MP, Castellano LM, Shorter J. Suramin inhibits Hsp104 ATPase and disaggregase activity. PLoS One 2014; 9:e110115. [PMID: 25299406 PMCID: PMC4192545 DOI: 10.1371/journal.pone.0110115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/17/2014] [Indexed: 12/16/2022] Open
Abstract
Hsp104 is a hexameric AAA+ protein that utilizes energy from ATP hydrolysis to dissolve disordered protein aggregates as well as amyloid fibers. Interestingly, Hsp104 orthologues are found in all kingdoms of life except animals. Thus, Hsp104 could represent an interesting drug target. Specific inhibition of Hsp104 activity might antagonize non-metazoan parasites that depend on a potent heat shock response, while producing little or no side effects to the host. However, no small molecule inhibitors of Hsp104 are known except guanidinium chloride. Here, we screen over 16,000 small molecules and identify 16 novel inhibitors of Hsp104 ATPase activity. Excluding compounds that inhibited Hsp104 activity by non-specific colloidal effects, we defined Suramin as an inhibitor of Hsp104 ATPase activity. Suramin is a polysulphonated naphthylurea and is used as an antiprotozoal drug for African Trypanosomiasis. Suramin also interfered with Hsp104 disaggregase, unfoldase, and translocase activities, and the inhibitory effect of Suramin was not rescued by Hsp70 and Hsp40. Suramin does not disrupt Hsp104 hexamers and does not effectively inhibit ClpB, the E. coli homolog of Hsp104, establishing yet another key difference between Hsp104 and ClpB behavior. Intriguingly, a potentiated Hsp104 variant, Hsp104A503V, is more sensitive to Suramin than wild-type Hsp104. By contrast, Hsp104 variants bearing inactivating sensor-1 mutations in nucleotide-binding domain (NBD) 1 or 2 are more resistant to Suramin. Thus, Suramin depends upon ATPase events at both NBDs to exert its maximal effect. Suramin could develop into an important mechanistic probe to study Hsp104 structure and function.
Collapse
Affiliation(s)
- Mariana P. Torrente
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura M. Castellano
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Davies T, Jordan SN, Chand V, Sees JA, Laband K, Carvalho AX, Shirasu-Hiza M, Kovar DR, Dumont J, Canman JC. High-resolution temporal analysis reveals a functional timeline for the molecular regulation of cytokinesis. Dev Cell 2014; 30:209-23. [PMID: 25073157 DOI: 10.1016/j.devcel.2014.05.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 03/17/2014] [Accepted: 05/12/2014] [Indexed: 02/08/2023]
Abstract
To take full advantage of fast-acting temperature-sensitive mutations, thermal control must be extremely rapid. We developed the Therminator, a device capable of shifting sample temperature in ~17 s while simultaneously imaging cell division in vivo. Applying this technology to six key regulators of cytokinesis, we found that each has a distinct temporal requirement in the Caenorhabditis elegans zygote. Specifically, myosin-II is required throughout cytokinesis until contractile ring closure. In contrast, formin-mediated actin nucleation is only required during assembly and early contractile ring constriction. Centralspindlin is required to maintain division after ring closure, although its GAP activity is only required until just prior to closure. Finally, the chromosomal passenger complex is required for cytokinesis only early in mitosis, but not during metaphase or cytokinesis. Together, our results provide a precise functional timeline for molecular regulators of cytokinesis using the Therminator, a powerful tool for ultra-rapid protein inactivation.
Collapse
Affiliation(s)
- Tim Davies
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Shawn N Jordan
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Vandana Chand
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Jennifer A Sees
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Kimberley Laband
- CNRS, Institut Jacques Monod, Univ. P7, 75205 Paris CEDEX 13, France
| | - Ana X Carvalho
- Molecular and Cellular Biology Unit, Instituto de Biologia Molecular e Celular (IBMC), 4150-180 Porto, Portugal
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Julien Dumont
- CNRS, Institut Jacques Monod, Univ. P7, 75205 Paris CEDEX 13, France
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
9
|
KAWAMOTO YUKIHIRO, OHYAMA YOSHITO, CHIBA TADASHIGE, YAGISHITA HISAO, SAKASHITA HIDEAKI, IMAI KAZUSHI. Proteomic identification of keratin alterations with enhanced proliferation of oral carcinoma cells by loss of mucosa-associated lymphoid tissue 1 expression. Int J Oncol 2013; 43:729-36. [DOI: 10.3892/ijo.2013.1990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/15/2013] [Indexed: 11/05/2022] Open
|
10
|
Bembenek JN, Verbrugghe KJC, Khanikar J, Csankovszki G, Chan RC. Condensin and the spindle midzone prevent cytokinesis failure induced by chromatin bridges in C. elegans embryos. Curr Biol 2013; 23:937-46. [PMID: 23684975 DOI: 10.1016/j.cub.2013.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/12/2013] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND During cell division, chromosomes must clear the path of the cleavage furrow before the onset of cytokinesis. The abscission checkpoint in mammalian cells stabilizes the cleavage furrow in the presence of a chromatin obstruction. This provides time to resolve the obstruction before the cleavage furrow regresses or breaks the chromosomes, preventing aneuploidy or DNA damage. Two unanswered questions in the proposed mechanistic pathway of the abscission checkpoint concern factors involved in (1) resolving the obstructions and (2) coordinating obstruction resolution with the delay in cytokinesis. RESULTS We found that the one-cell and two-cell C. elegans embryos suppress furrow regression following depletion of essential chromosome-segregation factors: topoisomerase II(TOP-2), CENP-A(HCP-3), cohesin, and to a lesser degree, condensin. Chromatin obstructions activated Aurora B(AIR-2) at the spindle midzone, which is needed for the abscission checkpoint in other systems. Condensin I, but not condensin II, localizes to the spindle midzone in anaphase and to the midbody during normal cytokinesis. Interestingly, condensin I is enriched on chromatin bridges and near the midzone/midbody in an AIR-2-dependent manner. Disruption of AIR-2, the spindle midzone, or condensin leads to cytokinesis failure in a chromatin-obstruction-dependent manner. Examination of the condensin-deficient embryos uncovered defects in both the resolution of the chromatin obstructions and the maintenance of the stable cleavage furrow. CONCLUSIONS We postulate that condensin I is recruited by Aurora B(AIR-2) to aid in the resolution of chromatin obstructions and also helps generate a signal to maintain the delay in cytokinesis.
Collapse
Affiliation(s)
- Joshua N Bembenek
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Conjugation of ubiquitin (ubiquitination) to substrate proteins is a widespread modification that ensures fidelity of many cellular processes. During mitosis, different dynamic morphological transitions have to be coordinated in a temporal and spatial manner to allow for precise partitioning of the genetic material into two daughter cells, and ubiquitination of key mitotic factors is believed to provide both directionality and fidelity to this process. While directionality can be achieved by a proteolytic type of ubiquitination signal, the fidelity is often determined by various types of ubiquitin conjugation that does not target substrates for proteolysis by the proteasome. An additional level of complexity is provided by various ubiquitin-interacting proteins that act downstream of the ubiquitinated substrate and can serve as "decoders" for the ubiquitin signal. They may, specifically reverse ubiquitin attachment (deubiquitinating enzymes, DUBs) or, act as a receptor for transfer of the ubiquitinated substrate toward downstream signaling components and/or subcellular compartments (ubiquitin-binding proteins, UBPs). In this review, we aim at summarizing the knowledge and emerging concepts about the role of ubiquitin decoders, DUBs, and UBPs that contribute to faithful regulation of mitotic division.
Collapse
Affiliation(s)
- Sadek Fournane
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
| | | | | | | |
Collapse
|
12
|
Franz A, Ackermann L, Hoppe T. Create and preserve: proteostasis in development and aging is governed by Cdc48/p97/VCP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:205-15. [PMID: 23583830 DOI: 10.1016/j.bbamcr.2013.03.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/08/2013] [Accepted: 03/25/2013] [Indexed: 12/24/2022]
Abstract
The AAA-ATPase Cdc48 (also called p97 or VCP) acts as a key regulator in proteolytic pathways, coordinating recruitment and targeting of substrate proteins to the 26S proteasome or lysosomal degradation. However, in contrast to the well-known function in ubiquitin-dependent cellular processes, the physiological relevance of Cdc48 in organismic development and maintenance of protein homeostasis is less understood. Therefore, studies on multicellular model organisms help to decipher how Cdc48-dependent proteolysis is regulated in time and space to meet developmental requirements. Given the importance of developmental regulation and tissue maintenance, defects in Cdc48 activity have been linked to several human pathologies including protein aggregation diseases. Thus, addressing the underlying disease mechanisms not only contributes to our understanding on the organism-wide function of Cdc48 but also facilitates the design of specific medical therapies. In this review, we will portray the role of Cdc48 in the context of multicellular organisms, pointing out its importance for developmental processes, tissue surveillance, and disease prevention. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- André Franz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | | | | |
Collapse
|
13
|
Suppressors of ipl1-2 in components of a Glc7 phosphatase complex, Cdc48 AAA ATPase, TORC1, and the kinetochore. G3-GENES GENOMES GENETICS 2012; 2:1687-701. [PMID: 23275890 PMCID: PMC3516489 DOI: 10.1534/g3.112.003814] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/24/2012] [Indexed: 01/26/2023]
Abstract
Ipl1/Aurora B is the catalytic subunit of a protein kinase complex required for chromosome segregation and nuclear division. Before anaphase, Ipl1 is required to establish proper kinetochore-microtubule associations and to regulate the spindle assembly checkpoint (SAC). The phosphatase Glc7/PP1 opposes Ipl1 for these activities. To investigate Ipl1 and Glc7 regulation in more detail, we isolated and characterized mutations in the yeast Saccharomyces cerevisiae that raise the restrictive temperature of the ipl-2 mutant. These suppressors include three intragenic, second-site revertants in IPL1; 17 mutations in Glc7 phosphatase components (GLC7, SDS22, YPI1); two mutations in SHP1, encoding a regulator of the AAA ATPase Cdc48; and a mutation in TCO89, encoding a subunit of the TOR Complex 1. Two revertants contain missense mutations in microtubule binding components of the kinetochore. rev76 contains the missense mutation duo1-S115F, which alters an essential component of the DAM1/DASH complex. The mutant is cold sensitive and arrests in G2/M due to activation of the SAC. rev8 contains the missense mutation ndc80-K204E. K204 of Ndc80 corresponds to K166 of human Ndc80 and the human Ndc80 K166E variant was previously shown to be defective for microtubule binding in vitro. In a wild-type IPL1 background, ndc80-K204E cells grow slowly and the SAC is activated. The slow growth and cell cycle delay of ndc80-K204E cells are partially alleviated by the ipl1-2 mutation. These data provide biological confirmation of a biochemically based model for the effect of phosphorylation on Ndc80 function.
Collapse
|
14
|
Dobrynin G, Popp O, Romer T, Bremer S, Schmitz MHA, Gerlich DW, Meyer H. Cdc48/p97-Ufd1-Npl4 antagonizes Aurora B during chromosome segregation in HeLa cells. J Cell Sci 2011; 124:1571-80. [PMID: 21486945 DOI: 10.1242/jcs.069500] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During exit from mitosis in Xenopus laevis egg extracts, the AAA+ ATPase Cdc48/p97 (also known as VCP in vertebrates) and its adapter Ufd1-Npl4 remove the kinase Aurora B from chromatin to allow nucleus formation. Here, we show that in HeLa cells Ufd1-Npl4 already antagonizes Aurora B on chromosomes during earlier mitotic stages and that this is crucial for proper chromosome segregation. Depletion of Ufd1-Npl4 by small interfering RNA (siRNA) caused chromosome alignment and anaphase defects resulting in missegregated chromosomes and multi-lobed nuclei. Ufd1-Npl4 depletion also led to increased levels of Aurora B on prometaphase and metaphase chromosomes. This increase was associated with higher Aurora B activity, as evidenced by the partial resistance of CENP-A phosphorylation to the Aurora B inhibitor hesperadin. Furthermore, low concentrations of hesperadin partially rescued chromosome alignment in Ufd1-depleted cells, whereas, conversely, Ufd1-depletion partially restored congression in the presence of hesperadin. These data establish Cdc48/p97-Ufd1-Npl4 as a crucial negative regulator of Aurora B early in mitosis of human somatic cells and suggest that the activity of Aurora B on chromosomes needs to be restrained to ensure faithful chromosome segregation.
Collapse
Affiliation(s)
- Grzegorz Dobrynin
- Centre for Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Cheng YL, Chen RH. The AAA-ATPase Cdc48 and cofactor Shp1 promote chromosome bi-orientation by balancing Aurora B activity. J Cell Sci 2010; 123:2025-34. [PMID: 20483956 DOI: 10.1242/jcs.066043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly, disassembly and dynamic movement of macromolecules are integral to cell physiology. The ubiquitin-selective chaperone Cdc48 (p97 in Metazoa), an AAA-ATPase, might facilitate such processes in the cell cycle. Cdc48 in budding yeast was initially isolated from a mitotic mutant. However, its function in mitosis remained elusive. Here we show that the temperature-sensitive cdc48-3 mutant and depletion of cofactor Shp1 (p47 in Metazoa) cause cell-cycle arrest at metaphase. The arrest is due to a defect in bipolar attachment of the kinetochore that activates the spindle checkpoint. Furthermore, Cdc48-Shp1 positively regulates Glc7/protein phosphatase 1 by facilitating nuclear localization of Glc7, whereas it opposes Ipl1/Aurora B kinase activity. Thus, we propose that Cdc48-Shp1 promotes nuclear accumulation of Glc7 to counteract Ipl1 activity. Our results identify Cdc48 and Shp1 as critical components that balance the kinase and phosphatase activities at the kinetochore in order to achieve stable bipolar attachment.
Collapse
Affiliation(s)
- You-Liang Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
16
|
Meyer H, Drozdowska A, Dobrynin G. A role for Cdc48/p97 and Aurora B in controlling chromatin condensation during exit from mitosis. Biochem Cell Biol 2010; 88:23-8. [PMID: 20130676 DOI: 10.1139/o09-119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During cell division, chromosomes condense so that the replicated chromatids can be segregated by the mitotic spindle. While condensation is governed by cyclin-dependent kinase 1 (Cdk1) during mitotic entry and early mitosis, it is still poorly understood how condensation is maintained during anaphase after Cdk1 inactivation, and how decondensation is triggered in telophase. Here, we review recent reports that point to a novel role of Aurora B kinase in maintaining condensation and preventing premature nuclear envelope formation during exit from mitosis. Timely decondensation and nuclear envelope formation at the end of mitosis may then be triggered by two mechanisms. One is removing Aurora B phosphorylation marks from chromatin by specific phosphatases. The other is removing and inactivating Aurora B kinase itself by the ubiquitin system. We have recently provided evidence that the AAA ATPase Cdc48/p97 plays a central role in the inactivation of Aurora B, as it extracts ubiquitinated Aurora B from chromosomes and thus reduces chromatinassociated Aurora B activity.
Collapse
Affiliation(s)
- Hemmo Meyer
- Institute of Biochemistry, ETH Zurich, Zurich 8093, Switzerland.
| | | | | |
Collapse
|
17
|
Govindan JA, Nadarajan S, Kim S, Starich TA, Greenstein D. Somatic cAMP signaling regulates MSP-dependent oocyte growth and meiotic maturation in C. elegans. Development 2009; 136:2211-21. [PMID: 19502483 DOI: 10.1242/dev.034595] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Soma-germline interactions control fertility at many levels, including stem cell proliferation, meiosis and gametogenesis, yet the nature of these fundamental signaling mechanisms and their potential evolutionary conservation are incompletely understood. In C. elegans, a sperm-sensing mechanism regulates oocyte meiotic maturation and ovulation, tightly coordinating sperm availability and fertilization. Sperm release the major sperm protein (MSP) signal to trigger meiotic resumption (meiotic maturation) and to promote contraction of the follicle-like gonadal sheath cells that surround oocytes. Using genetic mosaic analysis, we show that all known MSP-dependent meiotic maturation events in the germline require Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells. We show that the MSP hormone promotes the sustained actomyosin-dependent cytoplasmic streaming that drives oocyte growth. Furthermore, we demonstrate that efficient oocyte production and cytoplasmic streaming require Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells, thereby providing a somatic mechanism that coordinates oocyte growth and meiotic maturation with sperm availability. We present genetic evidence that MSP and Galpha(s)-adenylate cyclase signaling regulate oocyte growth and meiotic maturation in part by antagonizing gap-junctional communication between sheath cells and oocytes. In the absence of MSP or Galpha(s)-adenylate cyclase signaling, MSP binding sites are enriched and appear clustered on sheath cells. We discuss these results in the context of a model in which the sheath cells function as the major initial sensor of MSP, potentially via multiple classes of G-protein-coupled receptors. Our findings highlight a remarkable similarity between the regulation of meiotic resumption by soma-germline interactions in C. elegans and mammals.
Collapse
Affiliation(s)
- J Amaranath Govindan
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|