1
|
d'Humières J, Wang L, Sherwood DR, Plastino J. The actin protrusion deforms the nucleus during invasion through basement membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643012. [PMID: 40161654 PMCID: PMC11952552 DOI: 10.1101/2025.03.13.643012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cell invasion through basement membrane (BM) extracellular matrix barriers is important during organ development, immune cell trafficking, and cancer metastasis. Here we study an invasion event, anchor cell (AC) invasion, which occurs during Caenorhabditis elegans development. The actin protrusion of the invading AC mechanically displaces the BM, but it is not known how forces are balanced to prevent the growing actin protrusion from pushing itself backward when confronted with a load. Here we observe that the distal end of the actin protrusion in the invading AC abuts the nucleus and deforms it. Further we show that there is a correlation between invasion efficiency and nuclear deformation: under mutant conditions where invasion is reduced, nuclear deformation is diminished. However, nuclear deformation and invasion are unaffected by interfering with the molecular connections between the actin and microtubule cytoskeletons and the nuclear envelope. Together these data suggest that the AC actin protrusion braces against the nucleus to apply forces during invasion, but that nucleus-cytoskeleton molecular connections are not necessary for this to occur. SUMMARY STATEMENT Actin-based membrane protrusions in invading cells apply force to basement membrane (BM) barriers to help break through them. In cell motility in 2D, the actin protrusion uses cell-substrate adhesions for leverage to push forward against obstacles in what is known as the molecular clutch. The situation is different in 3D invasion, where the adhesive substrate is being effaced by the invading cell. It is not clear, in this case, why the growing actin protrusion doesn't push itself backwards instead of extending forwards through the BM. The data presented here provide evidence that the distal end of the invasive actin protrusion is braced against the stiff, immobile nucleus, allowing growth of the proximal end to apply force on the BM.
Collapse
|
2
|
Scott K, Singh N, Gordon KL. An RNAi screen of Rab GTPase genes in C. elegans reveals that somatic cells of the reproductive system depend on rab-1 for morphogenesis but not stem cell niche maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626641. [PMID: 39677816 PMCID: PMC11642880 DOI: 10.1101/2024.12.03.626641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Membrane trafficking is a crucial function of all cells and is regulated at multiple levels from vesicle formation, packaging, and localization to fusion, exocytosis, and endocytosis. Rab GTPase proteins are core regulators of eukaryotic membrane trafficking, but developmental roles of specific Rab GTPases are less well characterized, potentially because of their essentiality for basic cellular function. C. elegans gonad development entails the coordination of cell growth, proliferation, and migration-processes in which membrane trafficking is known to be required. Here we take an organ-focused approach to Rab GTPase function in vivo to assess the roles of Rab genes in reproductive system development. We performed a whole-body RNAi screen of the entire Rab family in C. elegans to uncover Rabs essential for gonad development. Notable gonad defects resulted from RNAi knockdown of rab-1, the key regulator of ER-Golgi trafficking. We then examined the effects of tissue-specific RNAi knockdown of rab-1 in somatic reproductive system and germline cells. We interrogated the dual functions of the distal tip cell (DTC) as both a leader cell of gonad organogenesis and the germline stem cell niche. We find that rab-1 functions cell-autonomously and non-cell-autonomously to regulate both somatic gonad and germline development. Gonad migration, elongation, and gamete differentiation-but surprisingly not germline stem niche function-are highly sensitive to rab-1 RNAi.
Collapse
Affiliation(s)
- Kayt Scott
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Noor Singh
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kacy Lynn Gordon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- UNC Lineberger Comprehensive Cancer Center
| |
Collapse
|
3
|
Rautela U, Sarkar GC, Chaudhary A, Chatterjee D, Rosh M, Arimbasseri AG, Mukhopadhyay A. A non-canonical role of somatic Cyclin D/CYD-1 in oogenesis and in maintenance of reproductive fidelity, dependent on the FOXO/DAF-16 activation state. PLoS Genet 2024; 20:e1011453. [PMID: 39546504 PMCID: PMC11602045 DOI: 10.1371/journal.pgen.1011453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/27/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
For the optimal survival of a species, an organism coordinates its reproductive decisions with the nutrient availability of its niche. Thus, nutrient-sensing pathways like insulin-IGF-1 signaling (IIS) play an important role in modulating cell division, oogenesis, and reproductive aging. Lowering of the IIS leads to the activation of the downstream FOXO transcription factor (TF) DAF-16 in Caenorhabditis elegans which promotes oocyte quality and delays reproductive aging. However, less is known about how the IIS axis responds to changes in cell cycle proteins, particularly in the somatic tissues. Here, we show a new aspect of the regulation of the germline by this nutrient-sensing axis. First, we show that the canonical G1-S cyclin, Cyclin D/CYD-1, regulates reproductive fidelity from the uterine tissue of wild-type worms. Then, we show that knocking down cyd-1 in the uterine tissue of an IIS receptor mutant arrests oogenesis at the pachytene stage of meiosis-1 in a DAF-16-dependent manner. We observe activated DAF-16-dependent deterioration of the somatic gonadal tissues like the sheath cells, and transcriptional de-regulation of the sperm-to-oocyte switch genes which may be the underlying reason for the absence of oogenesis. Deleting DAF-16 releases the arrest and leads to restoration of the somatic gonad but poor-quality oocytes are produced. Together, our study reveals the unrecognized cell non-autonomous interaction of Cyclin D/CYD-1 and FOXO/DAF-16 in the regulation of oogenesis and reproductive fidelity.
Collapse
Affiliation(s)
- Umanshi Rautela
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Gautam Chandra Sarkar
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ayushi Chaudhary
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Debalina Chatterjee
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Mohtashim Rosh
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
4
|
Zhang Z, Yang H, Fang L, Zhao G, Xiang J, Zheng JC, Qin Z. DOS-3 mediates cell-non-autonomous DAF-16/FOXO activity in antagonizing age-related loss of C. elegans germline stem/progenitor cells. Nat Commun 2024; 15:4904. [PMID: 38851828 PMCID: PMC11162419 DOI: 10.1038/s41467-024-49318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
Age-related depletion of stem cells causes tissue degeneration and failure to tissue regeneration, driving aging at the organismal level. Previously we reported a cell-non-autonomous DAF-16/FOXO activity in antagonizing the age-related loss of germline stem/progenitor cells (GSPCs) in C. elegans, indicating that regulation of stem cell aging occurs at the organ system level. Here we discover the molecular effector that links the cell-non-autonomous DAF-16/FOXO activity to GSPC maintenance over time by performing a tissue-specific DAF-16/FOXO transcriptome analysis. Our data show that dos-3, which encodes a non-canonical Notch ligand, is a direct transcriptional target of DAF-16/FOXO and mediates the effect of the cell-non-autonomous DAF-16/FOXO activity on GSPC maintenance through activating Notch signaling in the germ line. Importantly, expression of a human homologous protein can functionally substitute for DOS-3 in this scenario. As Notch signaling controls the specification of many tissue stem cells, similar mechanisms may exist in other aging stem cell systems.
Collapse
Affiliation(s)
- Zhifei Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Haiyan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Lei Fang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Guangrong Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jun Xiang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China.
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200080, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200080, China.
- Innovation Center of Medical Basic Research for Brain Aging and Associated Diseases, Ministry of Education, Tongji University, Shanghai, 200331, China.
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200331, China.
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University School of Medicine, Shanghai, 200331, China.
| | - Zhao Qin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
- Innovation Center of Medical Basic Research for Brain Aging and Associated Diseases, Ministry of Education, Tongji University, Shanghai, 200331, China.
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200331, China.
| |
Collapse
|
5
|
Martinez MAQ, Zhao CZ, Moore FEQ, Yee C, Zhang W, Shen K, Martin BL, Matus DQ. Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell. Differentiation 2024; 137:100765. [PMID: 38522217 PMCID: PMC11196158 DOI: 10.1016/j.diff.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
The acquisition of the post-mitotic state is crucial for the execution of many terminally differentiated cell behaviors during organismal development. However, the mechanisms that maintain the post-mitotic state in this context remain poorly understood. To gain insight into these mechanisms, we used the genetically and visually accessible model of C. elegans anchor cell (AC) invasion into the vulval epithelium. The AC is a terminally differentiated uterine cell that normally exits the cell cycle and enters a post-mitotic state before initiating contact between the uterus and vulva through a cell invasion event. Here, we set out to identify the set of negative cell cycle regulators that maintain the AC in this post-mitotic, invasive state. Our findings revealed a critical role for CKI-1 (p21CIP1/p27KIP1) in redundantly maintaining the post-mitotic state of the AC, as loss of CKI-1 in combination with other negative cell cycle regulators-including CKI-2 (p21CIP1/p27KIP1), LIN-35 (pRb/p107/p130), FZR-1 (Cdh1/Hct1), and LIN-23 (β-TrCP)-resulted in proliferating ACs. Remarkably, time-lapse imaging revealed that these ACs retain their ability to invade. Upon examination of a node in the gene regulatory network controlling AC invasion, we determined that proliferating, invasive ACs do so by maintaining aspects of pro-invasive gene expression. We therefore report that the requirement for a post-mitotic state for invasive cell behavior can be bypassed following direct cell cycle perturbation.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Chris Z Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Frances E Q Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
6
|
Kenny-Ganzert IW, Sherwood DR. The C. elegans anchor cell: A model to elucidate mechanisms underlying invasion through basement membrane. Semin Cell Dev Biol 2024; 154:23-34. [PMID: 37422376 PMCID: PMC10592375 DOI: 10.1016/j.semcdb.2023.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Cell invasion through basement membrane barriers is crucial during many developmental processes and in immune surveillance. Dysregulation of invasion also drives the pathology of numerous human diseases, such as metastasis and inflammatory disorders. Cell invasion involves dynamic interactions between the invading cell, basement membrane, and neighboring tissues. Owing to this complexity, cell invasion is challenging to study in vivo, which has hampered the understanding of mechanisms controlling invasion. Caenorhabditis elegans anchor cell invasion is a powerful in vivo model where subcellular imaging of cell-basement membrane interactions can be combined with genetic, genomic, and single-cell molecular perturbation studies. In this review, we outline insights gained by studying anchor cell invasion, which span transcriptional networks, translational regulation, secretory apparatus expansion, dynamic and adaptable protrusions that breach and clear basement membrane, and a complex, localized metabolic network that fuels invasion. Together, investigation of anchor cell invasion is building a comprehensive understanding of the mechanisms that underlie invasion, which we expect will ultimately facilitate better therapeutic strategies to control cell invasive activity in human disease.
Collapse
Affiliation(s)
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
7
|
Martinez MAQ, Zhao CZ, Moore FEQ, Yee C, Zhang W, Shen K, Martin BL, Matus DQ. Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.16.533034. [PMID: 38370624 PMCID: PMC10871222 DOI: 10.1101/2023.03.16.533034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The acquisition of the post-mitotic state is crucial for the execution of many terminally differentiated cell behaviors during organismal development. However, the mechanisms that maintain the post-mitotic state in this context remain poorly understood. To gain insight into these mechanisms, we used the genetically and visually accessible model of C. elegans anchor cell (AC) invasion into the vulval epithelium. The AC is a terminally differentiated uterine cell that normally exits the cell cycle and enters a post-mitotic state, initiating contact between the uterus and vulva through a cell invasion event. Here, we set out to identify the set of negative cell cycle regulators that maintain the AC in this post-mitotic, invasive state. Our findings revealed a critical role for CKI-1 (p21CIP1/p27KIP1) in redundantly maintaining the post-mitotic state of the AC, as loss of CKI-1 in combination with other negative cell cycle regulators-including CKI-2 (p21CIP1/p27KIP1), LIN-35 (pRb/p107/p130), FZR-1 (Cdh1/Hct1), and LIN-23 (β-TrCP)-resulted in proliferating ACs. Remarkably, time-lapse imaging revealed that these ACs retain their ability to invade. Upon examination of a node in the gene regulatory network controlling AC invasion, we determined that proliferating, invasive ACs do so by maintaining aspects of pro-invasive gene expression. We therefore report that the requirement for a post-mitotic state for invasive cell behavior can be bypassed following direct cell cycle perturbation.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chris Z Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Frances E Q Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
8
|
Costa DS, Kenny-Ganzert IW, Chi Q, Park K, Kelley LC, Garde A, Matus DQ, Park J, Yogev S, Goldstein B, Gibney TV, Pani AM, Sherwood DR. The Caenorhabditis elegans anchor cell transcriptome: ribosome biogenesis drives cell invasion through basement membrane. Development 2023; 150:dev201570. [PMID: 37039075 PMCID: PMC10259517 DOI: 10.1242/dev.201570] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Cell invasion through basement membrane (BM) barriers is important in development, immune function and cancer progression. As invasion through BM is often stochastic, capturing gene expression profiles of actively invading cells in vivo remains elusive. Using the stereotyped timing of Caenorhabditis elegans anchor cell (AC) invasion, we generated an AC transcriptome during BM breaching. Through a focused RNAi screen of transcriptionally enriched genes, we identified new invasion regulators, including translationally controlled tumor protein (TCTP). We also discovered gene enrichment of ribosomal proteins. AC-specific RNAi, endogenous ribosome labeling and ribosome biogenesis analysis revealed that a burst of ribosome production occurs shortly after AC specification, which drives the translation of proteins mediating BM removal. Ribosomes also enrich near the AC endoplasmic reticulum (ER) Sec61 translocon and the endomembrane system expands before invasion. We show that AC invasion is sensitive to ER stress, indicating a heightened requirement for translation of ER-trafficked proteins. These studies reveal key roles for ribosome biogenesis and endomembrane expansion in cell invasion through BM and establish the AC transcriptome as a resource to identify mechanisms underlying BM transmigration.
Collapse
Affiliation(s)
- Daniel S. Costa
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27708, USA
| | | | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Kieop Park
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Laura C. Kelley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Aastha Garde
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - David Q. Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Junhyun Park
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Theresa V. Gibney
- Department of Biology, University of Virginia, Charlottesville, VA 29903, USA
| | - Ariel M. Pani
- Department of Biology, University of Virginia, Charlottesville, VA 29903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 29904, USA
| | - David R. Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| |
Collapse
|
9
|
Kenny-Ganzert I, Chi Q, Sherwood D. Differential production rates of cytosolic and transmembrane GFP reporters in C. elegans L3 larval uterine cells. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000813. [PMID: 37033704 PMCID: PMC10074172 DOI: 10.17912/micropub.biology.000813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023]
Abstract
Transgene driven protein expression is an important tool for investigating developmental mechanisms in C. elegans . Here, we have assessed protein production rates and levels in L3 larval uterine cells (UCs). Using ubiquitous promoter driven cytosolic and transmembrane tethered GFP, fluorescence recovery after photobleaching, and quantitative fluorescence analysis, we reveal that cytosolic GFP is produced at an ~two-fold higher rate than transmembrane tethered GFP and accumulates at ~five-fold higher levels in UCs. We also provide evidence that cytosolic GFP in the anchor cell, a specialized UC that mediates uterine-vulval connection, is more rapidly degraded through an autophagy-independent mechanism.
Collapse
Affiliation(s)
| | - Qiuyi Chi
- Department of Biology, Duke University
| | | |
Collapse
|
10
|
Park K, Jayadev R, Payne SG, Kenny-Ganzert IW, Chi Q, Costa DS, Ramos-Lewis W, Thendral SB, Sherwood DR. Reciprocal discoidin domain receptor signaling strengthens integrin adhesion to connect adjacent tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532639. [PMID: 36993349 PMCID: PMC10055161 DOI: 10.1101/2023.03.14.532639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Separate tissues connect through adjoining basement membranes to carry out molecular barrier, exchange, and organ support functions. Cell adhesion at these connections must be robust and balanced to withstand independent tissue movement. Yet, how cells achieve synchronized adhesion to connect tissues is unknown. Here, we have investigated this question using the C. elegans utse-seam tissue connection that supports the uterus during egg-laying. Through genetics, quantitative fluorescence, and cell specific molecular disruption, we show that type IV collagen, which fastens the linkage, also activates the collagen receptor discoidin domain receptor 2 (DDR-2) in both the utse and seam. RNAi depletion, genome editing, and photobleaching experiments revealed that DDR-2 signals through LET-60/Ras to coordinately strengthen an integrin adhesion in the utse and seam that stabilizes their connection. These results uncover a synchronizing mechanism for robust adhesion during tissue connection, where collagen both affixes the linkage and signals to both tissues to bolster their adhesion.
Collapse
Affiliation(s)
- Kieop Park
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Ranjay Jayadev
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Sara G. Payne
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27708, USA
| | | | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Daniel S. Costa
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | | | | | - David R. Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Correspondence:
| |
Collapse
|
11
|
Smeele PH, Vaccari T. Snapshots from within the cell: Novel trafficking and non trafficking functions of Snap29 during tissue morphogenesis. Semin Cell Dev Biol 2023; 133:42-52. [PMID: 35256275 DOI: 10.1016/j.semcdb.2022.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023]
Abstract
Membrane trafficking is a core cellular process that supports diversification of cell shapes and behaviors relevant to morphogenesis during development and in adult organisms. However, how precisely trafficking components regulate specific differentiation programs is incompletely understood. Snap29 is a multifaceted Soluble N-ethylmaleimide-sensitive factor Attachment protein Receptor, involved in a wide range of trafficking and non-trafficking processes in most cells. A body of knowledge, accrued over more than two decades since its discovery, reveals that Snap29 is essential for establishing and maintaining the operation of a number of cellular events that support cell polarity and signaling. In this review, we first summarize established functions of Snap29 and then we focus on novel ones in the context of autophagy, Golgi trafficking and vesicle fusion at the plasma membrane, as well as on non-trafficking activities of Snap29. We further describe emerging evidence regarding the compartmentalisation and regulation of Snap29. Finally, we explore how the loss of distinct functions of human Snap29 may lead to the clinical manifestations of congenital disorders such as CEDNIK syndrome and how altered SNAP29 activity may contribute to the pathogenesis of cancer, viral infection and neurodegenerative diseases.
Collapse
Affiliation(s)
- Paulien H Smeele
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| | - Thomas Vaccari
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
12
|
Gianakas CA, Keeley DP, Ramos-Lewis W, Park K, Jayadev R, Kenny IW, Chi Q, Sherwood DR. Hemicentin-mediated type IV collagen assembly strengthens juxtaposed basement membrane linkage. J Cell Biol 2022; 222:213571. [PMID: 36282214 PMCID: PMC9597354 DOI: 10.1083/jcb.202112096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023] Open
Abstract
Basement membrane (BM) matrices surround and separate most tissues. However, through poorly understood mechanisms, BMs of adjacent tissue can also stably link to support organ structure and function. Using endogenous knock-in fluorescent proteins, conditional RNAi, optogenetics, and quantitative live imaging, we identified extracellular matrix proteins mediating a BM linkage (B-LINK) between the uterine utse and epidermal seam cell BMs in Caenorhabditis elegans that supports the uterus during egg-laying. We found that hemicentin is secreted by the utse and promotes fibulin-1 assembly to jointly initiate the B-LINK. During egg-laying, however, both proteins' levels decline and are not required for B-LINK maintenance. Instead, we discovered that hemicentin recruits ADAMTS9/20, which facilitates the assembly of high levels of type IV collagen that sustains the B-LINK during the mechanically active egg-laying period. This work reveals mechanisms underlying BM-BM linkage maturation and identifies a crucial function for hemicentin and fibulin-1 in initiating attachment and type IV collagen in strengthening this specialized form of tissue linkage.
Collapse
Affiliation(s)
- Claire A. Gianakas
- Department of Biology, Duke University, Durham, NC,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | | | | | - Kieop Park
- Department of Biology, Duke University, Durham, NC
| | | | | | - Qiuyi Chi
- Department of Biology, Duke University, Durham, NC
| | - David R. Sherwood
- Department of Biology, Duke University, Durham, NC,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC,Correspondence to David R. Sherwood:
| |
Collapse
|
13
|
Fierro Morales JC, Xue Q, Roh-Johnson M. An evolutionary and physiological perspective on cell-substrate adhesion machinery for cell migration. Front Cell Dev Biol 2022; 10:943606. [PMID: 36092727 PMCID: PMC9453864 DOI: 10.3389/fcell.2022.943606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-substrate adhesion is a critical aspect of many forms of cell migration. Cell adhesion to an extracellular matrix (ECM) generates traction forces necessary for efficient migration. One of the most well-studied structures cells use to adhere to the ECM is focal adhesions, which are composed of a multilayered protein complex physically linking the ECM to the intracellular actin cytoskeleton. Much of our understanding of focal adhesions, however, is primarily derived from in vitro studies in Metazoan systems. Though these studies provide a valuable foundation to the cell-substrate adhesion field, the evolution of cell-substrate adhesion machinery across evolutionary space and the role of focal adhesions in vivo are largely understudied within the field. Furthering investigation in these areas is necessary to bolster our understanding of the role cell-substrate adhesion machinery across Eukaryotes plays during cell migration in physiological contexts such as cancer and pathogenesis. In this review, we review studies of cell-substrate adhesion machinery in organisms evolutionary distant from Metazoa and cover the current understanding and ongoing work on how focal adhesions function in single and collective cell migration in an in vivo environment, with an emphasis on work that directly visualizes cell-substrate adhesions. Finally, we discuss nuances that ought to be considered moving forward and the importance of future investigation in these emerging fields for application in other fields pertinent to adhesion-based processes.
Collapse
Affiliation(s)
| | | | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
14
|
Cote LE, Feldman JL. Won't You be My Neighbor: How Epithelial Cells Connect Together to Build Global Tissue Polarity. Front Cell Dev Biol 2022; 10:887107. [PMID: 35800889 PMCID: PMC9253303 DOI: 10.3389/fcell.2022.887107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues form continuous barriers to protect against external environments. Within these tissues, epithelial cells build environment-facing apical membranes, junction complexes that anchor neighbors together, and basolateral surfaces that face other cells. Critically, to form a continuous apical barrier, neighboring epithelial cells must align their apico-basolateral axes to create global polarity along the entire tissue. Here, we will review mechanisms of global tissue-level polarity establishment, with a focus on how neighboring epithelial cells of different origins align their apical surfaces. Epithelial cells with different developmental origins and/or that polarize at different times and places must align their respective apico-basolateral axes. Connecting different epithelial tissues into continuous sheets or tubes, termed epithelial fusion, has been most extensively studied in cases where neighboring cells initially dock at an apical-to-apical interface. However, epithelial cells can also meet basal-to-basal, posing several challenges for apical continuity. Pre-existing basement membrane between the tissues must be remodeled and/or removed, the cells involved in docking are specialized, and new cell-cell adhesions are formed. Each of these challenges can involve changes to apico-basolateral polarity of epithelial cells. This minireview highlights several in vivo examples of basal docking and how apico-basolateral polarity changes during epithelial fusion. Understanding the specific molecular mechanisms of basal docking is an area ripe for further exploration that will shed light on complex morphogenetic events that sculpt developing organisms and on the cellular mechanisms that can go awry during diseases involving the formation of cysts, fistulas, atresias, and metastases.
Collapse
|
15
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
16
|
Garde A, Kenny IW, Kelley LC, Chi Q, Mutlu AS, Wang MC, Sherwood DR. Localized glucose import, glycolytic processing, and mitochondria generate a focused ATP burst to power basement-membrane invasion. Dev Cell 2022; 57:732-749.e7. [PMID: 35316617 PMCID: PMC8969095 DOI: 10.1016/j.devcel.2022.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Invasive cells use transient, energy-consuming protrusions to breach basement membrane (BM) barriers. Using the ATP sensor PercevalHR during anchor cell (AC) invasion in Caenorhabditis elegans, we show that BM invasion is accompanied by an ATP burst from mitochondria at the invasive front. RNAi screening and visualization of a glucose biosensor identified two glucose transporters, FGT-1 and FGT-2, which bathe invasive front mitochondria with glucose and facilitate the ATP burst to form protrusions. FGT-1 localizes at high levels along the invasive membrane, while FGT-2 is adaptive, enriching most strongly during BM breaching and when FGT-1 is absent. Cytosolic glycolytic enzymes that process glucose for mitochondrial ATP production cluster with invasive front mitochondria and promote higher mitochondrial membrane potential and ATP levels. Finally, we show that UNC-6 (netrin), which polarizes invasive protrusions, also orients FGT-1. These studies reveal a robust and integrated energy acquisition, processing, and delivery network that powers BM breaching.
Collapse
Affiliation(s)
- Aastha Garde
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Isabel W Kenny
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Laura C Kelley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Ayse Sena Mutlu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
17
|
A DNA replication-independent function of pre-replication complex genes during cell invasion in C. elegans. PLoS Biol 2022; 20:e3001317. [PMID: 35192608 PMCID: PMC8863262 DOI: 10.1371/journal.pbio.3001317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
Cell invasion is an initiating event during tumor cell metastasis and an essential process during development. A screen of C. elegans orthologs of genes overexpressed in invasive human melanoma cells has identified several components of the conserved DNA pre-replication complex (pre-RC) as positive regulators of anchor cell (AC) invasion. The pre-RC genes function cell-autonomously in the G1-arrested AC to promote invasion, independently of their role in licensing DNA replication origins in proliferating cells. While the helicase activity of the pre-RC is necessary for AC invasion, the downstream acting DNA replication initiation factors are not required. The pre-RC promotes the invasive fate by regulating the expression of extracellular matrix genes and components of the PI3K signaling pathway. Increasing PI3K pathway activity partially suppressed the AC invasion defects caused by pre-RC depletion, suggesting that the PI3K pathway is one critical pre-RC target. We propose that the pre-RC, or a part of it, acts in the postmitotic AC as a transcriptional regulator that facilitates the switch to an invasive phenotype.
Collapse
|
18
|
Smith JJ, Xiao Y, Parsan N, Medwig-Kinney TN, Martinez MAQ, Moore FEQ, Palmisano NJ, Kohrman AQ, Chandhok Delos Reyes M, Adikes RC, Liu S, Bracht SA, Zhang W, Wen K, Kratsios P, Matus DQ. The SWI/SNF chromatin remodeling assemblies BAF and PBAF differentially regulate cell cycle exit and cellular invasion in vivo. PLoS Genet 2022; 18:e1009981. [PMID: 34982771 PMCID: PMC8759636 DOI: 10.1371/journal.pgen.1009981] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/14/2022] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodelers such as the SWI/SNF complex coordinate metazoan development through broad regulation of chromatin accessibility and transcription, ensuring normal cell cycle control and cellular differentiation in a lineage-specific and temporally restricted manner. Mutations in genes encoding the structural subunits of chromatin, such as histone subunits, and chromatin regulating factors are associated with a variety of disease mechanisms including cancer metastasis, in which cancer co-opts cellular invasion programs functioning in healthy cells during development. Here we utilize Caenorhabditis elegans anchor cell (AC) invasion as an in vivo model to identify the suite of chromatin agents and chromatin regulating factors that promote cellular invasiveness. We demonstrate that the SWI/SNF ATP-dependent chromatin remodeling complex is a critical regulator of AC invasion, with pleiotropic effects on both G0 cell cycle arrest and activation of invasive machinery. Using targeted protein degradation and enhanced RNA interference (RNAi) vectors, we show that SWI/SNF contributes to AC invasion in a dose-dependent fashion, with lower levels of activity in the AC corresponding to aberrant cell cycle entry and increased loss of invasion. Our data specifically implicate the SWI/SNF BAF assembly in the regulation of the G0 cell cycle arrest in the AC, whereas the SWI/SNF PBAF assembly promotes AC invasion via cell cycle-independent mechanisms, including attachment to the basement membrane (BM) and activation of the pro-invasive fos-1/FOS gene. Together these findings demonstrate that the SWI/SNF complex is necessary for two essential components of AC invasion: arresting cell cycle progression and remodeling the BM. The work here provides valuable single-cell mechanistic insight into how the SWI/SNF assemblies differentially contribute to cellular invasion and how SWI/SNF subunit-specific disruptions may contribute to tumorigeneses and cancer metastasis. Cellular invasion is required for animal development and homeostasis. Inappropriate activation of invasion however can result in cancer metastasis. Invasion programs are orchestrated by complex gene regulatory networks (GRN) that function in a coordinated fashion to turn on and off pro-invasive genes. While the core of GRNs are DNA binding transcription factors, they require aid from chromatin remodelers to access the genome. To identify the suite of pro-invasive chromatin remodelers, we paired high resolution imaging with RNA interference to individually knockdown 269 chromatin factors, identifying the evolutionarily conserved SWItching defective/Sucrose Non-Fermenting (SWI/SNF) ATP-dependent chromatin remodeling complex as a new regulator of Caenorhabditis elegans anchor cell (AC) invasion. Using a combination of CRISPR/Cas9 genome engineering and targeted protein degradation we demonstrate that the core SWI/SNF complex functions in a dose-dependent manner to control invasion. Further, we determine that the accessory SWI/SNF complexes, BAF and PBAF, contribute to invasion via distinctive mechanisms: BAF is required to prevent inappropriate proliferation while PBAF promotes AC attachment and remodeling of the basement membrane. Together, our data provide insights into how the SWI/SNF complex, which is mutated in many human cancers, can function in a dose-dependent fashion to regulate switching from invasive to proliferative fates.
Collapse
Affiliation(s)
- Jayson J. Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Yutong Xiao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nithin Parsan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Taylor N. Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael A. Q. Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Frances E. Q. Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nicholas J. Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Abraham Q. Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mana Chandhok Delos Reyes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Rebecca C. Adikes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Biology Department, Siena College, Loudonville, New York, United States of America
| | - Simeiyun Liu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sydney A. Bracht
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kailong Wen
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Paschalis Kratsios
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - David Q. Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Qiu Z, Park A, Wang L, Wilsey R, Lee M. The RGD (Arg-Gly-Asp) is a potential cell-binding motif of UNC-52/PERLECAN. Biochem Biophys Res Commun 2022; 586:143-149. [PMID: 34844120 DOI: 10.1016/j.bbrc.2021.11.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
UNC-52/perlecan is a basement membrane (BM) proteoglycan playing an essential role in the muscle cell attachment of C. elegans. The UNC-52 protein contains two RGD (Arg-Gly-Asp) motifs in domains III and IV, a well-characterized tripeptide known for binding to mammalian β integrin. To investigate the role of the RGD motif in UNC-52/perlecan, we created two mutations in the 2021RGD2023 motif: one mutation changed the RGD to an RGE, and the other deleted the RGD motif. The RGE2023 caused defective actin filaments and aberrant localization of PAT-3 β integrin and TLN-1/talin. Additionally, the in-frame deletion of RGD2023 resulted in a paralyzed and arrested at two-fold embryonic stages (Pat) phenotype, which is the identical phenotype of the pat-3 β integrin null allele. These results indicate that RGD2023 is a potential ligand for cell binding and is essential for development and survival. Furthermore, our analysis reveals that the RGD of an invertebrate BM molecule is a potential cell-binding motif, suggesting that the function of the RGD motif is conserved among species.
Collapse
Affiliation(s)
- Zhongqiang Qiu
- Department of Biology, Baylor University, Waco, TX, 76798, USA
| | - Aileen Park
- Department of Biology, Baylor University, Waco, TX, 76798, USA
| | - Lianzijun Wang
- Department of Biology, Baylor University, Waco, TX, 76798, USA
| | - Rachel Wilsey
- Department of Biology, Baylor University, Waco, TX, 76798, USA
| | - Myeongwoo Lee
- Department of Biology, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
20
|
Berger S, Spiri S, deMello A, Hajnal A. Microfluidic-based imaging of complete Caenorhabditis elegans larval development. Development 2021; 148:269282. [PMID: 34170296 PMCID: PMC8327290 DOI: 10.1242/dev.199674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022]
Abstract
Several microfluidic-based methods for Caenorhabditis elegans imaging have recently been introduced. Existing methods either permit imaging across multiple larval stages without maintaining a stable worm orientation, or allow for very good immobilization but are only suitable for shorter experiments. Here, we present a novel microfluidic imaging method that allows parallel live-imaging across multiple larval stages, while maintaining worm orientation and identity over time. This is achieved through an array of microfluidic trap channels carefully tuned to maintain worms in a stable orientation, while allowing growth and molting to occur. Immobilization is supported by an active hydraulic valve, which presses worms onto the cover glass during image acquisition only. In this way, excellent quality images can be acquired with minimal impact on worm viability or developmental timing. The capabilities of the devices are demonstrated by observing the hypodermal seam and P-cell divisions and, for the first time, the entire process of vulval development from induction to the end of morphogenesis. Moreover, we demonstrate feasibility of on-chip RNAi by perturbing basement membrane breaching during anchor cell invasion. Summary: Parallel microfluidic long-term imaging allows reliable long-term study of Caenorhabditis elegans development across multiple larval stages at high-resolution and with minimal effect on physiological development.
Collapse
Affiliation(s)
- Simon Berger
- Department of Molecular Life Science, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.,Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Silvan Spiri
- Department of Molecular Life Science, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Science, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
21
|
Lattmann E, Deng T, Hajnal A. To Divide or Invade: A Look Behind the Scenes of the Proliferation-Invasion Interplay in the Caenorhabditis elegans Anchor Cell. Front Cell Dev Biol 2021; 8:616051. [PMID: 33490081 PMCID: PMC7815685 DOI: 10.3389/fcell.2020.616051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cell invasion is defined by the capability of cells to migrate across compartment boundaries established by basement membranes (BMs). The development of complex organs involves regulated cell growth and regrouping of different cell types, which are enabled by controlled cell proliferation and cell invasion. Moreover, when a malignant tumor takes control over the body, cancer cells evolve to become invasive, allowing them to spread to distant sites and form metastases. At the core of the switch between proliferation and invasion are changes in cellular morphology driven by remodeling of the cytoskeleton. Proliferative cells utilize their actomyosin network to assemble a contractile ring during cytokinesis, while invasive cells form actin-rich protrusions, called invadopodia that allow them to breach the BMs. Studies of developmental cell invasion as well as of malignant tumors revealed that cell invasion and proliferation are two mutually exclusive states. In particular, anchor cell (AC) invasion during Caenorhabditis elegans larval development is an excellent model to study the transition from cell proliferation to cell invasion under physiological conditions. This mini-review discusses recent insights from the C. elegans AC invasion model into how G1 cell-cycle arrest is coordinated with the activation of the signaling networks required for BM breaching. Many regulators of the proliferation-invasion network are conserved between C. elegans and mammals. Therefore, the worm may provide important clues to better understand cell invasion and metastasis formation in humans.
Collapse
Affiliation(s)
- Evelyn Lattmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ting Deng
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program, University and ETH Zurich, Zurich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Haag A, Walser M, Henggeler A, Hajnal A. The CHORD protein CHP-1 regulates EGF receptor trafficking and signaling in C. elegans and in human cells. eLife 2020; 9:e50986. [PMID: 32053105 PMCID: PMC7062474 DOI: 10.7554/elife.50986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
The intracellular trafficking of growth factor receptors determines the activity of their downstream signaling pathways. Here, we show that the putative HSP-90 co-chaperone CHP-1 acts as a regulator of EGFR trafficking in C. elegans. Loss of chp-1 causes the retention of the EGFR in the ER and decreases MAPK signaling. CHP-1 is specifically required for EGFR trafficking, as the localization of other transmembrane receptors is unaltered in chp-1(lf) mutants, and the inhibition of hsp-90 or other co-chaperones does not affect EGFR localization. The role of the CHP-1 homolog CHORDC1 during EGFR trafficking is conserved in human cells. Analogous to C. elegans, the response of CHORDC1-deficient A431 cells to EGF stimulation is attenuated, the EGFR accumulates in the ER and ERK2 activity decreases. Although CHP-1 has been proposed to act as a co-chaperone for HSP90, our data indicate that CHP-1 plays an HSP90-independent function in controlling EGFR trafficking through the ER.
Collapse
Affiliation(s)
- Andrea Haag
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
- Molecular Life Science Zürich PhD ProgramZürichSwitzerland
| | - Michael Walser
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| | - Adrian Henggeler
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| |
Collapse
|
23
|
Medwig-Kinney TN, Smith JJ, Palmisano NJ, Tank S, Zhang W, Matus DQ. A developmental gene regulatory network for C. elegans anchor cell invasion. Development 2020; 147:dev185850. [PMID: 31806663 PMCID: PMC6983719 DOI: 10.1242/dev.185850] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023]
Abstract
Cellular invasion is a key part of development, immunity and disease. Using an in vivo model of Caenorhabditis elegans anchor cell invasion, we characterize the gene regulatory network that promotes cell invasion. The anchor cell is initially specified in a stochastic cell fate decision mediated by Notch signaling. Previous research has identified four conserved transcription factors, fos-1 (Fos), egl-43 (EVI1/MEL), hlh-2 (E/Daughterless) and nhr-67 (NR2E1/TLX), that mediate anchor cell specification and/or invasive behavior. Connections between these transcription factors and the underlying cell biology that they regulate are poorly understood. Here, using genome editing and RNA interference, we examine transcription factor interactions before and after anchor cell specification. Initially, these transcription factors function independently of one another to regulate LIN-12 (Notch) activity. Following anchor cell specification, egl-43, hlh-2 and nhr-67 function largely parallel to fos-1 in a type I coherent feed-forward loop with positive feedback to promote invasion. Together, these results demonstrate that the same transcription factors can function in cell fate specification and differentiated cell behavior, and that a gene regulatory network can be rapidly assembled to reinforce a post-mitotic, pro-invasive state.
Collapse
Affiliation(s)
- Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Jayson J Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Nicholas J Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Sujata Tank
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Science and Technology Research Program, Smithtown High School East, St. James, NY 11780-1833, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
24
|
Jayadev R, Chi Q, Keeley DP, Hastie EL, Kelley LC, Sherwood DR. α-Integrins dictate distinct modes of type IV collagen recruitment to basement membranes. J Cell Biol 2019; 218:3098-3116. [PMID: 31387941 PMCID: PMC6719451 DOI: 10.1083/jcb.201903124] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 01/04/2023] Open
Abstract
Basement membranes (BMs) are cell-associated extracellular matrices that support tissue integrity, signaling, and barrier properties. Type IV collagen is critical for BM function, yet how it is directed into BMs in vivo is unclear. Through live-cell imaging of endogenous localization, conditional knockdown, and misexpression experiments, we uncovered distinct mechanisms of integrin-mediated collagen recruitment to Caenorhabditis elegans postembryonic gonadal and pharyngeal BMs. The putative laminin-binding αINA-1/βPAT-3 integrin was selectively activated in the gonad and recruited laminin, which directed moderate collagen incorporation. In contrast, the putative Arg-Gly-Asp (RGD)-binding αPAT-2/βPAT-3 integrin was activated in the pharynx and recruited high levels of collagen in an apparently laminin-independent manner. Through an RNAi screen, we further identified the small GTPase RAP-3 (Rap1) as a pharyngeal-specific PAT-2/PAT-3 activator that modulates collagen levels. Together, these studies demonstrate that tissues can use distinct mechanisms to direct collagen incorporation into BMs to precisely control collagen levels and construct diverse BMs.
Collapse
Affiliation(s)
- Ranjay Jayadev
- Department of Biology, Regeneration Next, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Eric L Hastie
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
25
|
Integrins Have Cell-Type-Specific Roles in the Development of Motor Neuron Connectivity. J Dev Biol 2019; 7:jdb7030017. [PMID: 31461926 PMCID: PMC6787651 DOI: 10.3390/jdb7030017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/11/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023] Open
Abstract
Formation of the nervous system requires a complex series of events including proper extension and guidance of neuronal axons and dendrites. Here we investigate the requirement for integrins, a class of transmembrane cell adhesion receptors, in regulating these processes across classes of C. elegans motor neurons. We show α integrin/ina-1 is expressed by both GABAergic and cholinergic motor neurons. Despite this, our analysis of hypomorphic ina-1(gm144) mutants indicates preferential involvement of α integrin/ina-1 in GABAergic commissural development, without obvious involvement in cholinergic commissural development. The defects in GABAergic commissures of ina-1(gm144) mutants included both premature termination and guidance errors and were reversed by expression of wild type ina-1 under control of the native ina-1 promoter. Our results also show that α integrin/ina-1 is important for proper outgrowth and guidance of commissures from both embryonic and post-embryonic born GABAergic motor neurons, indicating an ongoing requirement for integrin through two phases of GABAergic neuron development. Our findings provide insights into neuron-specific roles for integrin that would not be predicted based solely upon expression analysis.
Collapse
|
26
|
Nichols EL, Smith CJ. Synaptic-like Vesicles Facilitate Pioneer Axon Invasion. Curr Biol 2019; 29:2652-2664.e4. [DOI: 10.1016/j.cub.2019.06.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/24/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
|
27
|
Gulvady AC, Forsythe IJ, Turner CE. Hic-5 regulates Src-induced invadopodia rosette formation and organization. Mol Biol Cell 2019; 30:1298-1313. [PMID: 30893012 PMCID: PMC6724605 DOI: 10.1091/mbc.e18-10-0629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibroblasts transformed by the proto-oncogene Src form individual invadopodia that can spontaneously self-organize into large matrix-degrading superstructures called rosettes. However, the mechanisms by which the invadopodia can spatiotemporally reorganize their architecture is not well understood. Here, we show that Hic-5, a close relative of the scaffold protein paxillin, is essential for the formation and organization of rosettes in active Src-transfected NIH3T3 fibroblasts and cancer-associated fibroblasts. Live cell imaging, combined with domain-mapping analysis of Hic-5, identified critical motifs as well as phosphorylation sites that are required for the formation and dynamics of rosettes. Using pharmacological inhibition and mutant expression, we show that FAK kinase activity, along with its proximity to and potential interaction with the LD2,3 motifs of Hic-5, is necessary for rosette formation. Invadopodia dynamics and their coalescence into rosettes were also dependent on Rac1, formin, and myosin II activity. Superresolution microscopy revealed the presence of formin FHOD1 and INF2-mediated unbranched radial F-actin fibers emanating from invadopodia and rosettes, which may facilitate rosette formation. Collectively, our data highlight a novel role for Hic-5 in orchestrating the organization of invadopodia into higher-order rosettes, which may promote the localized matrix degradation necessary for tumor cell invasion.
Collapse
Affiliation(s)
- Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Ian J Forsythe
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
28
|
Pioneer axons employ Cajal's battering ram to enter the spinal cord. Nat Commun 2019; 10:562. [PMID: 30718484 PMCID: PMC6362287 DOI: 10.1038/s41467-019-08421-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
Sensory axons must traverse a spinal cord glia limitans to connect the brain with the periphery. The fundamental mechanism of how these axons enter the spinal cord is still debatable; both Ramon y Cajal’s battering ram hypothesis and a boundary cap model have been proposed. To distinguish between these hypotheses, we visualized the entry of pioneer axons into the dorsal root entry zone (DREZ) with time-lapse imaging in zebrafish. Here, we identify that DRG pioneer axons enter the DREZ before the arrival of neural crest cells at the DREZ. Instead, actin-rich invadopodia in the pioneer axon are necessary and sufficient for DREZ entry. Using photoactivable Rac1, we demonstrate cell-autonomous functioning of invasive structures in pioneer axon spinal entry. Together these data support the model that actin-rich invasion structures dynamically drive pioneer axon entry into the spinal cord, indicating that distinct pioneer and secondary events occur at the DREZ. The fundamental mechanism of how sensory axons traverse a spinal cord glia limitans remains debatable, with some suggesting a role for boundary cap cells at the dorsal root entry zone (DREZ). Here, authors use time-lapse imaging of DRG axons at the DREZ to show that pioneer axons enter the DREZ before the presence of boundary cap cells, and that this entry is critically dependent on the development of actin-rich invasion structures reminiscent of invadopodia.
Collapse
|
29
|
Kelley LC, Chi Q, Cáceres R, Hastie E, Schindler AJ, Jiang Y, Matus DQ, Plastino J, Sherwood DR. Adaptive F-Actin Polymerization and Localized ATP Production Drive Basement Membrane Invasion in the Absence of MMPs. Dev Cell 2019; 48:313-328.e8. [PMID: 30686527 PMCID: PMC6372315 DOI: 10.1016/j.devcel.2018.12.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/07/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are associated with decreased patient prognosis but have failed as anti-invasive drug targets despite promoting cancer cell invasion. Through time-lapse imaging, optical highlighting, and combined genetic removal of the five MMPs expressed during anchor cell (AC) invasion in C. elegans, we find that MMPs hasten invasion by degrading basement membrane (BM). Though irregular and delayed, AC invasion persists in MMP- animals via adaptive enrichment of the Arp2/3 complex at the invasive cell membrane, which drives formation of an F-actin-rich protrusion that physically breaches and displaces BM. Using a large-scale RNAi synergistic screen and a genetically encoded ATP FRET sensor, we discover that mitochondria enrich within the protrusion and provide localized ATP that fuels F-actin network growth. Thus, without MMPs, an invasive cell can alter its BM-breaching tactics, suggesting that targeting adaptive mechanisms will be necessary to mitigate BM invasion in human pathologies.
Collapse
Affiliation(s)
- Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Rodrigo Cáceres
- CNRS, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research Université, Paris 75005, France; Sorbonne Université, Paris 75005, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Eric Hastie
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Adam J Schindler
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Yue Jiang
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Julie Plastino
- CNRS, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research Université, Paris 75005, France; Sorbonne Université, Paris 75005, France
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
30
|
Keeley DP, Sherwood DR. Tissue linkage through adjoining basement membranes: The long and the short term of it. Matrix Biol 2019; 75-76:58-71. [PMID: 29803937 PMCID: PMC6252152 DOI: 10.1016/j.matbio.2018.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
Basement membranes (BMs) are thin dense sheets of extracellular matrix that surround most tissues. When the BMs of neighboring tissues come into contact, they usually slide along one another and act to separate tissues and organs into distinct compartments. However, in certain specialized regions, the BMs of neighboring tissues link, helping to bring tissues together. These BM connections can be transient, such as during tissue fusion events in development, or long-term, as with adult tissues involved with filtration, including the blood brain barrier and kidney glomerulus. The transitory nature of these connections in development and the complexity of tissue filtration systems in adults have hindered the understanding of how juxtaposed BMs fasten together. The recent identification of a BM-BM adhesion system in C. elegans, termed B-LINK (BM linkage), however, is revealing cellular and extracellular matrix components of a nascent tissue adhesion system. We discuss insights gained from studying the B-LINK tissue adhesion system in C. elegans, compare this adhesion with other BM-BM connections in Drosophila and vertebrates, and outline important future directions towards elucidating this fascinating and poorly understood mode of adhesion that joins neighboring tissues.
Collapse
Affiliation(s)
- Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
31
|
Rasmussen NR, Dickinson DJ, Reiner DJ. Ras-Dependent Cell Fate Decisions Are Reinforced by the RAP-1 Small GTPase in Caenorhabditiselegans. Genetics 2018; 210:1339-1354. [PMID: 30257933 PMCID: PMC6283165 DOI: 10.1534/genetics.118.301601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/15/2018] [Indexed: 12/15/2022] Open
Abstract
The notoriety of the small GTPase Ras as the most mutated oncoprotein has led to a well-characterized signaling network largely conserved across metazoans. Yet the role of its close relative Rap1 (Ras Proximal), which shares 100% identity between their core effector binding sequences, remains unclear. A long-standing controversy in the field is whether Rap1 also functions to activate the canonical Ras effector, the S/T kinase Raf. We used the developmentally simpler Caenorhabditis elegans, which lacks the extensive paralog redundancy of vertebrates, to examine the role of RAP-1 in two distinct LET-60/Ras-dependent cell fate patterning events: induction of 1° vulval precursor cell (VPC) fate and of the excretory duct cell. Fluorescence-tagged endogenous RAP-1 is localized to plasma membranes and is expressed ubiquitously, with even expression levels across the VPCs. RAP-1 and its activating GEF PXF-1 function cell autonomously and are necessary for maximal induction of 1° VPCs. Critically, mutationally activated endogenous RAP-1 is sufficient both to induce ectopic 1°s and duplicate excretory duct cells. Like endogenous RAP-1, before induction GFP expression from the pxf-1 promoter is uniform across VPCs. However, unlike endogenous RAP-1, after induction GFP expression is increased in presumptive 1°s and decreased in presumptive 2°s. We conclude that RAP-1 is a positive regulator that promotes Ras-dependent inductive fate decisions. We hypothesize that PXF-1 activation of RAP-1 serves as a minor parallel input into the major LET-60/Ras signal through LIN-45/Raf.
Collapse
Affiliation(s)
- Neal R Rasmussen
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77030
| | - Daniel J Dickinson
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78705
| | - David J Reiner
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77030
| |
Collapse
|
32
|
Cáceres R, Bojanala N, Kelley LC, Dreier J, Manzi J, Di Federico F, Chi Q, Risler T, Testa I, Sherwood DR, Plastino J. Forces drive basement membrane invasion in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2018; 115:11537-11542. [PMID: 30348801 PMCID: PMC6233148 DOI: 10.1073/pnas.1808760115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During invasion, cells breach basement membrane (BM) barriers with actin-rich protrusions. It remains unclear, however, whether actin polymerization applies pushing forces to help break through BM, or whether actin filaments play a passive role as scaffolding for targeting invasive machinery. Here, using the developmental event of anchor cell (AC) invasion in Caenorhabditis elegans, we observe that the AC deforms the BM and underlying tissue just before invasion, exerting forces in the tens of nanonewtons range. Deformation is driven by actin polymerization nucleated by the Arp2/3 complex and its activators, whereas formins and cross-linkers are dispensable. Delays in invasion upon actin regulator loss are not caused by defects in AC polarity, trafficking, or secretion, as appropriate markers are correctly localized in the AC even when actin is reduced and invasion is disrupted. Overall force production emerges from this study as one of the main tools that invading cells use to promote BM disruption in C. elegans.
Collapse
Affiliation(s)
- Rodrigo Cáceres
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, 75005 Paris, France
- Université Paris Descartes, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Nagagireesh Bojanala
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, Durham, NC 27705
| | - Jes Dreier
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, 10014 Stockholm, Sweden
| | - John Manzi
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Fahima Di Federico
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, Durham, NC 27705
| | - Thomas Risler
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Ilaria Testa
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, 10014 Stockholm, Sweden
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, NC 27705
| | - Julie Plastino
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS, 75005 Paris, France;
- Sorbonne Université, 75005 Paris, France
| |
Collapse
|
33
|
Wadsworth WG. A perspective on SOAL, a stochastic model of neuronal outgrowth. Dev Biol 2018; 443:92-101. [PMID: 30201437 DOI: 10.1016/j.ydbio.2018.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/27/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022]
Abstract
A functional nervous system requires neuronal connections to be made in a highly detailed and stereotypic manner. During development, neurons extend processes that can branch, travel in different directions, and form elaborate patterns. These patterns are essential for forming proper connections. Patterns of outgrowth are produced by complex molecular events that cause a fluid membrane to move. The collective impact of dynamic fluctuating events at the microscale cause the patterns of outgrowth observed at the macroscale. Patterning is genetically controlled, but the effects genes have on membrane movement and patterning are not well understood. To better understand how genes control outgrowth patterns, I propose a statistically-oriented asymmetric localization (SOAL) model. This model is based on the theory that receptor-mediated outgrowth activity is stochastically oriented and when the system is at equilibrium there is an equal probability of outgrowth being oriented in any direction. This concept allows a statistical mechanics approach that can correlate the microscale events of outgrowth to the observed macroscale patterns. Proof-of-concept experiments suggest this approach can be used to study the effect genes have on outgrowth patterns. The SOAL model also provides a new theoretical framework for conceptualizing guidance. According to the model, outgrowth activity becomes asymmetrically localized to the neuron's surface in a statistically dependent manner. Extracellular cues regulate the probability of outgrowth along the surface and the orientation of outgrowth fluctuates across the surface over time. This creates a directional bias that allows the growth cone to navigate in reference to the composition of extracellular cues.
Collapse
Affiliation(s)
- William G Wadsworth
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States.
| |
Collapse
|
34
|
Stuelten CH, Parent CA, Montell DJ. Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer 2018; 18:296-312. [PMID: 29546880 PMCID: PMC6790333 DOI: 10.1038/nrc.2018.15] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis remains the greatest challenge in the clinical management of cancer. Cell motility is a fundamental and ancient cellular behaviour that contributes to metastasis and is conserved in simple organisms. In this Review, we evaluate insights relevant to human cancer that are derived from the study of cell motility in non-mammalian model organisms. Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster and Danio rerio permit direct observation of cells moving in complex native environments and lend themselves to large-scale genetic and pharmacological screening. We highlight insights derived from each of these organisms, including the detailed signalling network that governs chemotaxis towards chemokines; a novel mechanism of basement membrane invasion; the positive role of E-cadherin in collective direction-sensing; the identification and optimization of kinase inhibitors for metastatic thyroid cancer on the basis of work in flies; and the value of zebrafish for live imaging, especially of vascular remodelling and interactions between tumour cells and host tissues. While the motility of tumour cells and certain host cells promotes metastatic spread, the motility of tumour-reactive T cells likely increases their antitumour effects. Therefore, it is important to elucidate the mechanisms underlying all types of cell motility, with the ultimate goal of identifying combination therapies that will increase the motility of beneficial cells and block the spread of harmful cells.
Collapse
Affiliation(s)
- Christina H. Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
- Department of Pharmacology, Michigan Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- ;
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, USA
- ;
| |
Collapse
|
35
|
Abstract
The basement membrane is a thin but dense, sheet-like specialized type of extracellular matrix that has remarkably diverse functions tailored to individual tissues and organs. Tightly controlled spatial and temporal changes in its composition and structure contribute to the diversity of basement membrane functions. These different basement membranes undergo dynamic transformations throughout animal life, most notably during development. Numerous developmental mechanisms are regulated or mediated by basement membranes, often by a combination of molecular and mechanical processes. A particularly important process involves cell transmigration through a basement membrane because of its link to cell invasion in disease. While developmental and disease processes share some similarities, what clearly distinguishes the two is dysregulation of cells and extracellular matrices in disease. With its relevance to many developmental and disease processes, the basement membrane is a vitally important area of research that may provide novel insights into biological mechanisms and development of innovative therapeutic approaches. Here we present a review of developmental and disease dynamics of basement membranes in Caenorhabditis elegans, Drosophila, and vertebrates.
Collapse
|
36
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
37
|
Naegeli KM, Hastie E, Garde A, Wang Z, Keeley DP, Gordon KL, Pani AM, Kelley LC, Morrissey MA, Chi Q, Goldstein B, Sherwood DR. Cell Invasion In Vivo via Rapid Exocytosis of a Transient Lysosome-Derived Membrane Domain. Dev Cell 2017; 43:403-417.e10. [PMID: 29161591 DOI: 10.1016/j.devcel.2017.10.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/19/2017] [Accepted: 10/22/2017] [Indexed: 11/27/2022]
Abstract
Invasive cells use small invadopodia to breach basement membrane (BM), a dense matrix that encases tissues. Following the breach, a large protrusion forms to clear a path for tissue entry by poorly understood mechanisms. Using RNAi screening for defects in Caenorhabditis elegans anchor cell (AC) invasion, we found that UNC-6(netrin)/UNC-40(DCC) signaling at the BM breach site directs exocytosis of lysosomes using the exocyst and SNARE SNAP-29 to form a large protrusion that invades vulval tissue. Live-cell imaging revealed that the protrusion is enriched in the matrix metalloprotease ZMP-1 and transiently expands AC volume by more than 20%, displacing surrounding BM and vulval epithelium. Photobleaching and genetic perturbations showed that the BM receptor dystroglycan forms a membrane diffusion barrier at the neck of the protrusion, which enables protrusion growth. Together these studies define a netrin-dependent pathway that builds an invasive protrusion, an isolated lysosome-derived membrane structure specialized to breach tissue barriers.
Collapse
Affiliation(s)
- Kaleb M Naegeli
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - Eric Hastie
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Aastha Garde
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Kacy L Gordon
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Ariel M Pani
- Biology Department and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Meghan A Morrissey
- The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA
| | - Bob Goldstein
- Biology Department and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, 130 Science Drive, Box 90338, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
38
|
Ghosh S, Vetrone SA, Sternberg PW. Non-neuronal cell outgrowth in C. elegans. WORM 2017; 6:e1405212. [PMID: 29238627 DOI: 10.1080/21624054.2017.1405212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Cell outgrowth is a hallmark of some non-migratory developing cells during morphogenesis. Understanding the mechanisms that control cell outgrowth not only increases our knowledge of tissue and organ development, but can also shed light on disease pathologies that exhibit outgrowth-like behavior. C. elegans is a highly useful model for the analysis of genes and the function of their respective proteins. In addition, C. elegans also has several cells and tissues that undergo outgrowth during development. Here we discuss the outgrowth mechanisms of nine different C. elegans cells and tissues. We specifically focus on how these cells and tissues grow outward and the interactions they make with their environment. Through our own identification, and a meta-analysis, we also identify gene families involved in multiple cell outgrowth processes, which defined potential C. elegans core components of cell outgrowth, as well as identify a potential stepwise cell behavioral cascade used by cells undergoing outgrowth.
Collapse
Affiliation(s)
- Srimoyee Ghosh
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | | | - Paul W Sternberg
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
39
|
Live-cell confocal microscopy and quantitative 4D image analysis of anchor-cell invasion through the basement membrane in Caenorhabditis elegans. Nat Protoc 2017; 12:2081-2096. [PMID: 28880279 DOI: 10.1038/nprot.2017.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cell invasion through basement membrane (BM) barriers is crucial in development, leukocyte trafficking and the spread of cancer. The mechanisms that direct invasion, despite their importance in normal and disease states, are poorly understood, largely because of the inability to visualize dynamic cell-BM interactions in vivo. This protocol describes multichannel time-lapse confocal imaging of anchor-cell invasion in live Caenorhabditis elegans. Methods presented include outline-slide preparation and worm growth synchronization (15 min), mounting (20 min), image acquisition (20-180 min), image processing (20 min) and quantitative analysis (variable timing). The acquired images enable direct measurement of invasive dynamics including formation of invadopodia and cell-membrane protrusions, and removal of BM. This protocol can be combined with genetic analysis, molecular-activity probes and optogenetic approaches to uncover the molecular mechanisms underlying cell invasion. These methods can also be readily adapted by any worm laboratory for real-time analysis of cell migration, BM turnover and cell-membrane dynamics.
Collapse
|
40
|
Fu R, Jiang X, Huang Z, Zhang H. The spectraplakins of Caenorhabditis elegans : Cytoskeletal crosslinkers and beyond. Semin Cell Dev Biol 2017; 69:58-68. [DOI: 10.1016/j.semcdb.2017.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/04/2017] [Accepted: 06/10/2017] [Indexed: 02/07/2023]
|
41
|
Walser M, Umbricht CA, Fröhli E, Nanni P, Hajnal A. β-Integrin de-phosphorylation by the Density-Enhanced Phosphatase DEP-1 attenuates EGFR signaling in C. elegans. PLoS Genet 2017; 13:e1006592. [PMID: 28135265 PMCID: PMC5305270 DOI: 10.1371/journal.pgen.1006592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/13/2017] [Accepted: 01/20/2017] [Indexed: 11/19/2022] Open
Abstract
Density-Enhanced Phosphatase-1 (DEP-1) de-phosphorylates various growth factor receptors and adhesion proteins to regulate cell proliferation, adhesion and migration. Moreover, dep-1/scc1 mutations have been detected in various types of human cancers, indicating a broad tumor suppressor activity. During C. elegans development, DEP-1 mediates binary cell fate decisions by negatively regulating EGFR signaling. Using a substrate-trapping DEP-1 mutant in a proteomics approach, we have identified the C. elegans β-integrin subunit PAT-3 as a specific DEP-1 substrate. DEP-1 selectively de-phosphorylates tyrosine 792 in the membrane-proximal NPXY motif to promote integrin activation via talin recruitment. The non-phosphorylatable β-integrin mutant pat-3(Y792F) partially suppresses the hyperactive EGFR signaling phenotype caused by loss of dep-1 function. Thus, DEP-1 attenuates EGFR signaling in part by de-phosphorylating Y792 in the β-integrin cytoplasmic tail, besides the direct de-phosphorylation of the EGFR. Furthermore, in vivo FRAP analysis indicates that the αβ-integrin/talin complex attenuates EGFR signaling by restricting receptor mobility on the basolateral plasma membrane. We propose that DEP-1 regulates EGFR signaling via two parallel mechanisms, by direct receptor de-phosphorylation and by restricting receptor mobility through αβ-integrin activation.
Collapse
Affiliation(s)
- Michael Walser
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, University of Zürich, Zürich, Switzerland
- Molecular Life Science Zürich PhD program, Zürich, Switzerland
| | - Christoph Alois Umbricht
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, University of Zürich, Zürich, Switzerland
| | - Erika Fröhli
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, University of Zürich, Zürich, Switzerland
| | - Paolo Nanni
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Winterthurerstr. 190, Zürich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, University of Zürich, Zürich, Switzerland
| |
Collapse
|
42
|
Chisholm AD, Hutter H, Jin Y, Wadsworth WG. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans. Genetics 2016; 204:849-882. [PMID: 28114100 PMCID: PMC5105865 DOI: 10.1534/genetics.115.186262] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment.
Collapse
Affiliation(s)
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, and
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, Chevy Chase, Maryland, and
| | - William G Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
43
|
Ylivinkka I, Keski-Oja J, Hyytiäinen M. Netrin-1: A regulator of cancer cell motility? Eur J Cell Biol 2016; 95:513-520. [PMID: 27793362 DOI: 10.1016/j.ejcb.2016.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 02/01/2023] Open
Abstract
Netrins form a family of secreted and membrane-associated proteins, netrin-1 being the prototype and most investigated member of the family. The major physiological functions of netrin-1 lie in the regulation of axonal development as well as morphogenesis of different branched organs, by promoting the polarity of migratory/invasive front of the cell. On the other hand, netrin-1 acts as a factor preventing cell apoptosis. These events are mediated via a range of different receptors, including UNC5 and DCC-families. Cancer cells often employ developmental pathways to gain survival and motility advantage. Within recent years, there has been increasing number of observations of upregulation of netrin-1 expression in different forms of cancer, and the increased expression of netrin-1 has been linked to its functions as a survival and invasion promoting factor. We review here recent advances in the netrin-1 related developmental processes that may be of special interest in tumor biology, in addition to the known functions of netrin-1 in tumor biology with special focus on cancer cell migration.
Collapse
Affiliation(s)
- Irene Ylivinkka
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Finland; The Hospital District of Helsinki and Uusimaa, Finland
| | - Jorma Keski-Oja
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Finland; The Hospital District of Helsinki and Uusimaa, Finland
| | - Marko Hyytiäinen
- Translational Cancer Biology Research Program, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
44
|
McClatchey ST, Wang Z, Linden LM, Hastie EL, Wang L, Shen W, Chen A, Chi Q, Sherwood DR. Boundary cells restrict dystroglycan trafficking to control basement membrane sliding during tissue remodeling. eLife 2016; 5. [PMID: 27661254 PMCID: PMC5061546 DOI: 10.7554/elife.17218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023] Open
Abstract
Epithelial cells and their underlying basement membranes (BMs) slide along each other to renew epithelia, shape organs, and enlarge BM openings. How BM sliding is controlled, however, is poorly understood. Using genetic and live cell imaging approaches during uterine-vulval attachment in C. elegans, we have discovered that the invasive uterine anchor cell activates Notch signaling in neighboring uterine cells at the boundary of the BM gap through which it invades to promote BM sliding. Through an RNAi screen, we found that Notch activation upregulates expression of ctg-1, which encodes a Sec14-GOLD protein, a member of the Sec14 phosphatidylinositol-transfer protein superfamily that is implicated in vesicle trafficking. Through photobleaching, targeted knockdown, and cell-specific rescue, our results suggest that CTG-1 restricts BM adhesion receptor DGN-1 (dystroglycan) trafficking to the cell-BM interface, which promotes BM sliding. Together, these studies reveal a new morphogenetic signaling pathway that controls BM sliding to remodel tissues.
Collapse
Affiliation(s)
| | - Zheng Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Wuhan, China.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gastrointestinal Surgery, Union Hospital, Wuhan, China.,Development and Molecular Oncology Laboratory, Union Hospital, Wuhan, China
| | - Lara M Linden
- Department of Biology, Duke University, Durham, United States
| | - Eric L Hastie
- Department of Biology, Duke University, Durham, United States
| | - Lin Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Wuhan, China.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanqing Shen
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Wuhan, China.,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alan Chen
- Department of Biology, Duke University, Durham, United States
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, United States
| | | |
Collapse
|
45
|
Williams KC, Wong E, Leong HS, Jackson DN, Allan AL, Chambers AF. Cancer dissemination from a physical sciences perspective. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2016. [DOI: 10.1088/2057-1739/2/2/023001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Abstract
A major gap in our understanding of cell biology is how cells generate and interact with their surrounding extracellular matrix. Studying this problem during development has been particularly fruitful. Recent work on the basement membrane in developmental systems is transforming our view of this matrix from one of a static support structure to that of a dynamic scaffold that is regularly remodeled to actively shape tissues and direct cell behaviors.
Collapse
|
47
|
Morrissey MA, Jayadev R, Miley GR, Blebea CA, Chi Q, Ihara S, Sherwood DR. SPARC Promotes Cell Invasion In Vivo by Decreasing Type IV Collagen Levels in the Basement Membrane. PLoS Genet 2016; 12:e1005905. [PMID: 26926673 PMCID: PMC4771172 DOI: 10.1371/journal.pgen.1005905] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/07/2016] [Indexed: 02/04/2023] Open
Abstract
Overexpression of SPARC, a collagen-binding glycoprotein, is strongly associated with tumor invasion through extracellular matrix in many aggressive cancers. SPARC regulates numerous cellular processes including integrin-mediated cell adhesion, cell signaling pathways, and extracellular matrix assembly; however, the mechanism by which SPARC promotes cell invasion in vivo remains unclear. A main obstacle in understanding SPARC function has been the difficulty of visualizing and experimentally examining the dynamic interactions between invasive cells, extracellular matrix and SPARC in native tissue environments. Using the model of anchor cell invasion through the basement membrane (BM) extracellular matrix in Caenorhabditis elegans, we find that SPARC overexpression is highly pro-invasive and rescues BM transmigration in mutants with defects in diverse aspects of invasion, including cell polarity, invadopodia formation, and matrix metalloproteinase expression. By examining BM assembly, we find that overexpression of SPARC specifically decreases levels of BM type IV collagen, a crucial structural BM component. Reduction of type IV collagen mimicked SPARC overexpression and was sufficient to promote invasion. Tissue-specific overexpression and photobleaching experiments revealed that SPARC acts extracellularly to inhibit collagen incorporation into BM. By reducing endogenous SPARC, we also found that SPARC functions normally to traffic collagen from its site of synthesis to tissues that do not express collagen. We propose that a surplus of SPARC disrupts extracellular collagen trafficking and reduces BM collagen incorporation, thus weakening the BM barrier and dramatically enhancing its ability to be breached by invasive cells.
Collapse
Affiliation(s)
- Meghan A Morrissey
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ranjay Jayadev
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ginger R Miley
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Catherine A Blebea
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Shinji Ihara
- Multicellular Organization Laboratory, National Institute of Genetics,Yata, Mishima, Japan
| | - David R Sherwood
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
48
|
Abstract
The vascular basement membrane (BM) is a thin and dense cross-linked extracellular matrix layer that covers and protects blood vessels. Understanding how cells cross the physical barrier of the vascular BM will provide greater insight into the potentially critical role of vascular BM breaching in cancer extravasation, leukocyte trafficking and angiogenic sprouting. In the last year, new evidence has mechanistically linked the breaching of vascular BM with the formation of specific cellular micro-domains known as podosomes and invadopodia. These structures are specialized cell-matrix contacts with an inherent ability to degrade the extracellular matrix. Specifically, the formation of podosomes or invadopodia was shown as an important step in vascular sprouting and tumor cell extravasation, respectively. Here, we review and comment on these recent findings and explore the functions of podosomes and invadopodia within the context of pathological processes such as tumor dissemination and tumor angiogenesis.
Collapse
Affiliation(s)
- Giorgio Seano
- a Laboratory of Cell Migration ; Candiolo Cancer Institute - FPO; IRCCS ; Turin , Italy
| | | |
Collapse
|
49
|
Matus DQ, Lohmer LL, Kelley LC, Schindler AJ, Kohrman AQ, Barkoulas M, Zhang W, Chi Q, Sherwood DR. Invasive Cell Fate Requires G1 Cell-Cycle Arrest and Histone Deacetylase-Mediated Changes in Gene Expression. Dev Cell 2016; 35:162-74. [PMID: 26506306 DOI: 10.1016/j.devcel.2015.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022]
Abstract
Despite critical roles in development and cancer, the mechanisms that specify invasive cellular behavior are poorly understood. Through a screen of transcription factors in Caenorhabditis elegans, we identified G1 cell-cycle arrest as a precisely regulated requirement of the anchor cell (AC) invasion program. We show that the nuclear receptor nhr-67/tlx directs the AC into G1 arrest in part through regulation of the cyclin-dependent kinase inhibitor cki-1. Loss of nhr-67 resulted in non-invasive, mitotic ACs that failed to express matrix metalloproteinases or actin regulators and lack invadopodia, F-actin-rich membrane protrusions that facilitate invasion. We further show that G1 arrest is necessary for the histone deacetylase HDA-1, a key regulator of differentiation, to promote pro-invasive gene expression and invadopodia formation. Together, these results suggest that invasive cell fate requires G1 arrest and that strategies targeting both G1-arrested and actively cycling cells may be needed to halt metastatic cancer.
Collapse
Affiliation(s)
- David Q Matus
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| | - Lauren L Lohmer
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Laura C Kelley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Adam J Schindler
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Abraham Q Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Michalis Barkoulas
- Department of Life Sciences, Imperial College London, Imperial College Road SAF Building, London SW7 2AZ, UK
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
50
|
Dobrzynska A, Askjaer P. Vaccinia-related kinase 1 is required for early uterine development in Caenorhabditis elegans. Dev Biol 2016; 411:246-256. [PMID: 26827901 DOI: 10.1016/j.ydbio.2016.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 10/25/2022]
Abstract
Protein kinases regulate a multitude of processes by reversible phosphorylation of target molecules. Induction of cell proliferation and differentiation are fundamental to development and rely on tightly controlled kinase activities. Vaccinia-Related Kinases (VRKs) have emerged as a multifunctional family of kinases with essential functions conserved, from nematodes and fruit flies, to humans. VRK substrates include chromatin and transcription factors, whereas deregulation of VRKs is implicated in sterility, cancer and neurological defects. In contrast to previous observations, we describe here that Caenorhabditis elegans VRK-1 is expressed in all cell types, including proliferating and post-mitotic cells. Despite the ubiquitous expression pattern, we find that vrk-1 mutants are particularly impaired in uterine development. Our data show that VRK-1 is required for uterine cell proliferation and differentiation. Moreover, the anchor cell, a specialized uterine cell, fails to fuse with neighboring cells to form the utse syncytium in vrk-1 mutants, thus providing further insight on the role of VRKs in organogenesis.
Collapse
Affiliation(s)
- Agnieszka Dobrzynska
- Andalusian Center for Developmental Biology, CSIC-Junta de Andalucia-Universidad Pablo de Olavide, Carretera de Utrera, km 1, 41013 Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology, CSIC-Junta de Andalucia-Universidad Pablo de Olavide, Carretera de Utrera, km 1, 41013 Seville, Spain.
| |
Collapse
|