1
|
Hu L, Liu H, Ma H, Zeng X, Cao Y, Liu B, Li H, Zhang X. TRAF6-mediated ubiquitination of AKT1 in the nucleus occurs in a β-arrestin2-dependent manner upon insulin stimulation. Biochem Pharmacol 2024; 226:116362. [PMID: 38871335 DOI: 10.1016/j.bcp.2024.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
AKT, also known as protein kinase B (PKB), serves as a crucial regulator of numerous biological functions, including cell growth, metabolism, and tumorigenesis. Increasing evidence suggests that the kinase activity of AKT is regulated via ubiquitination by various E3 ligase enzymes in response to different stimuli. However, the molecular mechanisms underlying insulin-induced AKT ubiquitination are not yet fully understood. Here, we show that activation of the insulin receptor (IR) leads to enhanced ubiquitination of AKT1 at K8 and K14 residues, facilitated by the cytosolic E3 ubiquitin ligase enzyme, TRAF6. Further investigation using AKT1 mutants with modified nucleocytoplasmic shuttling properties reveals that TRAF6-mediated AKT1 ubiquitination occurs within the nucleus in a β-Arr2-dependent manner. The nuclear entry of TRAF6 depends on importin β1, while β-Arr2 regulates this process by facilitating the interaction between TRAF6 and importin β1. Additionally, the ubiquitination of AKT1 is essential for its translocation to the activated IR on the plasma membrane, where it plays a functional role in recruiting Glut4 and facilitating glucose uptake. This study uncovers the cellular components and processes involved in insulin-induced ubiquitination and activation of AKT1, providing insights and detailed strategies for manipulating AKT1.
Collapse
Affiliation(s)
- Li Hu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Haiping Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Haixiang Ma
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Xingyue Zeng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yongkai Cao
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Bing Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Huijun Li
- Department of Pharmaceuticals, People's Hospital of Zunyi City Bo Zhou District, Zunyi 563000, China
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Zhou X, Chen X, Hong T, Zhang M, Cai Y, Cui L. TTC3-Mediated Protein Quality Control, A Potential Mechanism for Cognitive Impairment. Cell Mol Neurobiol 2021; 42:1659-1669. [PMID: 33638766 PMCID: PMC9239942 DOI: 10.1007/s10571-021-01060-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/11/2021] [Indexed: 01/14/2023]
Abstract
The tetrapeptide repeat domain 3 (TTC3) gene falls within Down's syndrome (DS) critical region. Cognitive impairment is a common phenotype of DS and Alzheimer’s disease (AD), and overexpression of TTC3 can accelerate cognitive decline, but the specific mechanism is unknown. The TTC3-mediated protein quality control (PQC) mechanism, similar to the PQC system, is divided into three parts: it acts as a cochaperone to assist proteins in folding correctly; it acts as an E3 ubiquitin ligase (E3s) involved in protein degradation processes through the ubiquitin–proteasome system (UPS); and it may also eventually cause autophagy by affecting mitochondrial function. Thus, this article reviews the research progress on the structure, function, and metabolism of TTC3, including the recent research progress on TTC3 in DS and AD; the role of TTC3 in cognitive impairment through PQC in combination with the abovementioned attributes of TTC3; and the potential targets of TTC3 in the treatment of such diseases.
Collapse
Affiliation(s)
- Xu Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China.
| |
Collapse
|
3
|
LDOC1 Suppresses Microbe-Induced Production of IL-1β in Human Normal and Cancerous Oral Cells through the PI3K/Akt/GSK-3β Axis. Cancers (Basel) 2020; 12:cancers12113148. [PMID: 33120999 PMCID: PMC7694066 DOI: 10.3390/cancers12113148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Oral microbes often proliferate due to poor oral hygiene (POH). POH is associated with OSCC (oral squamous cell carcinoma). We investigated the role of LDOC1 in the production of IL-1β, an oncogenic proinflammatory cytokine in OSCC, induced by microorganisms in human oral cells. Candida albicans (CA) was detected in OSCC tissues. CA and the oral bacterium Fusobacterium nucleatum stimulate higher levels of IL-1β production in LDOC1-deficient OSCC cells than in LDOC1-expressing oral cells. CA SC5314 increased OSCC incidence in carcinogen-treated mice. Loss and gain of LDOC1 function resulted in increased and decreased, respectively, CA SC5314-induced IL-1β production. LDOC1 deficiency increased active pAktS473 upon SC5314 stimulation and inactive pGSK-3βS9 phosphorylated by pAktS473. PI3K and Akt inhibitors and expression of constitutively active mutant GSK-3βS9A reduced the SC5314-stimulated IL-1β production in LDOC1-deficient cells. These results indicate that the PI3K/Akt/pGSK-3β signaling contributes to LDOC1-mediated inhibition of microbe-induced IL-1β production, suggesting LDOC1 may determine the role of oral microbes in POH-associated OSCC. Abstract Poor oral hygiene (POH) is associated with oral squamous cell carcinoma (OSCC). Oral microbes often proliferate due to POH. Array data show that LDOC1 plays a role in immunity against pathogens. We investigated whether LDOC1 regulates the production of oral microbe-induced IL-1β, an oncogenic proinflammatory cytokine in OSCC. We demonstrated the presence of Candida albicans (CA) in 11.3% of OSCC tissues (n = 80). CA and the oral bacterium Fusobacterium nucleatum stimulate higher levels of IL-1β secretion by LDOC1-deficient OSCC cells than by LDOC1-expressing oral cells. CA SC5314 increased OSCC incidence in 4-NQO (a synthetic tobacco carcinogen) and arecoline-cotreated mice. Loss and gain of LDOC1 function significantly increased and decreased, respectively, CA SC5314-induced IL-1β production in oral and OSCC cell lines. Mechanistic studies showed that LDOC1 deficiency increased active phosphorylated Akt upon CA SC5314 stimulation and subsequent inhibitory phosphorylation of GSK-3βS9 by activated Akt. PI3K and Akt inhibitors and expression of the constitutively active mutant GSK-3βS9A significantly reduced the CA SC5314-stimulated IL-1β production in LDOC1-deficient cells. These results indicate that the PI3K/Akt/pGSK-3β signaling pathway contributes to LDOC1-mediated inhibition of oral microbe-induced IL-1β production, suggesting that LDOC1 may determine the pathogenic role of oral microbes in POH-associated OSCC.
Collapse
|
4
|
Chen Y, Huang L, Dong Y, Tao C, Zhang R, Shao H, Shen H. Effect of AKT1 (p. E17K) Hotspot Mutation on Malignant Tumorigenesis and Prognosis. Front Cell Dev Biol 2020; 8:573599. [PMID: 33123537 PMCID: PMC7573235 DOI: 10.3389/fcell.2020.573599] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
The substitution of the seventeenth amino acid glutamate by lysine in the homologous structural domain of the Akt1 gene pleckstrin is a somatic cellular mutation found in breast, colorectal, and ovarian cancers, named p. Glu17Lys or E17K. In recent years, a growing number of studies have suggested that this mutation may play a unique role in the development of tumors. In this review article, we describe how AKT1(E17K) mutations stimulate downstream signals that cause cells to emerge transformed; we explore the differential regulation and function of E17K in different physiological and pathological settings; and we also describe the phenomenon that E17K impedes tumor growth by interfering with growth-promoting and chemotherapy-resistant AKT1lowQCC generation, an intriguing finding that mutants may prolong tumor patient survival by activating feedback mechanisms and disrupting transcription. This review is intended to provide a better understanding of the role of AKT1(E17K) in cancer and to inform the development of AKT1(E17K)-based antitumor strategies.
Collapse
Affiliation(s)
- Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lan Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongjian Dong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Wang M, Jiang X. The significance of SUMOylation of angiogenic factors in cancer progression. Cancer Biol Ther 2018; 20:130-137. [PMID: 30261153 DOI: 10.1080/15384047.2018.1523854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is the process of endothelial cell migration and proliferation induced by angiogenic factors, which is essential for the development of tumors. In recent years, studies have reported that SUMOylation acts on tumor angiogenesis by targeting angiogenic factors as one of post-translational modifications of proteins. Anti-angiogenic therapy is a new treatment method for tumor treatment following radiotherapy and chemotherapy, and it inhibits tumor growth by blocking tumor blood vessels. Therefore, SUMOylation may become a potential target for anti-angiogenesis therapy. This article focuses on the effect of SUMOylation on vascular growth factors, important signaling pathways proteins, and the migration and function of endothelial cells, in order to provide a new research idea for the anti-angiogenic therapy of tumors.
Collapse
Affiliation(s)
- Mei Wang
- a Tumor laboratory, Department of Tumor Oncology , The Affiliated Lianyungang Hospital of Xuzhou Medical University , Lianyungang City , Jiangsu Province , China
| | - Xiaodong Jiang
- b Department of Tumor Oncology , The Affiliated Lianyungang Hospital of Xuzhou Medical University , Lianyungang City , Jiangsu Province , China
| |
Collapse
|
6
|
Nicotine induces H9C2 cell apoptosis via Akt protein degradation. Mol Med Rep 2017; 16:6269-6275. [DOI: 10.3892/mmr.2017.7331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/23/2017] [Indexed: 11/05/2022] Open
|
7
|
Guedj F, Pennings JLA, Massingham LJ, Wick HC, Siegel AE, Tantravahi U, Bianchi DW. An Integrated Human/Murine Transcriptome and Pathway Approach To Identify Prenatal Treatments For Down Syndrome. Sci Rep 2016; 6:32353. [PMID: 27586445 PMCID: PMC5009456 DOI: 10.1038/srep32353] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/27/2016] [Indexed: 01/23/2023] Open
Abstract
Anatomical and functional brain abnormalities begin during fetal life in Down syndrome (DS). We hypothesize that novel prenatal treatments can be identified by targeting signaling pathways that are consistently perturbed in cell types/tissues obtained from human fetuses with DS and mouse embryos. We analyzed transcriptome data from fetuses with trisomy 21, age and sex-matched euploid controls, and embryonic day 15.5 forebrains from Ts1Cje, Ts65Dn, and Dp16 mice. The new datasets were compared to other publicly available datasets from humans with DS. We used the human Connectivity Map (CMap) database and created a murine adaptation to identify FDA-approved drugs that can rescue affected pathways. USP16 and TTC3 were dysregulated in all affected human cells and two mouse models. DS-associated pathway abnormalities were either the result of gene dosage specific effects or the consequence of a global cell stress response with activation of compensatory mechanisms. CMap analyses identified 56 molecules with high predictive scores to rescue abnormal gene expression in both species. Our novel integrated human/murine systems biology approach identified commonly dysregulated genes and pathways. This can help to prioritize therapeutic molecules on which to further test safety and efficacy. Additional studies in human cells are ongoing prior to pre-clinical prenatal treatment in mice.
Collapse
Affiliation(s)
- Faycal Guedj
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, MA, United States
| | - Jeroen LA Pennings
- Center for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lauren J Massingham
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, MA, United States
| | - Heather C Wick
- Department of Computer Science, Tufts University, Medford, MA, United States
| | - Ashley E Siegel
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, MA, United States
| | - Umadevi Tantravahi
- Department of Pathology, Women and Infants' Hospital, Providence, RI, United States
| | - Diana W Bianchi
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, MA, United States
| |
Collapse
|
8
|
Archewa P, Pata S, Chotjumlong P, Supanchart C, Krisanaprakornkit S, Iamaroon A. Akt2 and p-Akt overexpression in oral cancer cells is due to a reduced rate of protein degradation. ACTA ACUST UNITED AC 2015; 8. [PMID: 26393327 DOI: 10.1111/jicd.12194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To quantitatively measure the increased expression of Akt2 and its phosphorylated form (p-Akt) in oral cancer cell lines and investigate the post-translational mechanism for Akt2 and p-Akt overexpression. METHODS Three oral cancer cell lines and three cell lines of primary human oral keratinocytes (HOKs) were cultured and the degrees of Akt2 and p-Akt expression was evaluated by immunoblot analysis and flow cytometry. Each cell line was incubated with cycloheximide, an inhibitor of new protein synthesis, for various times to quantitatively determine the remaining expression levels of Akt2 and p-Akt by flow cytometry. The localization of Akt2 and p-Akt was assessed by immunofluorescence. RESULTS The levels of Akt2 and p-Akt proteins were significantly higher in cancer cell lines than those in HOKs (P < 0.05). When the new protein synthesis was blocked by cycloheximide treatment, the degradation rate of Akt2 and p-Akt in oral cancer cells was significantly lower than that in HOKs (P < 0.05). Both Akt2 and p-Akt were more intensely stained in the cytoplasm of cancer cells, whereas HOKs expressed Akt2 and p-Akt only minimally. CONCLUSION Both Akt2 and p-Akt were overexpressed in oral cancer cells, which may be partly explained by a reduced rate of protein degradation in order to maintain high cytosolic levels.
Collapse
Affiliation(s)
- Prakasit Archewa
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Supansa Pata
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Pareena Chotjumlong
- Department of Oral Biology and Diagnostic Sciences, Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Chayarop Supanchart
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Suttichai Krisanaprakornkit
- Department of Oral Biology and Diagnostic Sciences, Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Anak Iamaroon
- Department of Oral Biology and Diagnostic Sciences, Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Kong XD, Liu N, Xu XJ, Zhao ZH, Jiang M. Screening of human chromosome 21 genes in the dorsolateral prefrontal cortex of individuals with Down syndrome. Mol Med Rep 2014; 11:1235-9. [PMID: 25370074 DOI: 10.3892/mmr.2014.2855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/03/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the current study was to identify the genes on human chromosome 21 (HC21) that may serve important functions in the pathogenesis of Down syndrome (DS). The microarray data GSE5390 were obtained from the Gene Expression Omnibus database, which contained 7 DS and 8 healthy normal samples. The data were then normalized and the differentially expressed genes (DEGs) were identified using the LIMMA package and Bonferroni correction. Furthermore, the DEGs underwent clustering and gene ontology analysis. Additionally, the locations of the DEGs on HC21 were confirmed using human genome 19 in the University of California, Santa Cruz Interaction Browser. A total of 25 upregulated and 275 downregulated genes were screened between DS and healthy samples with a false discovery rate of <0.05 and |logFC|>1. The expression levels of these genes in the two samples were different. In addition, the up‑ and downregulated genes were markedly enriched in organic substance biological processes (P=4.48x10‑10) and cell‑cell signaling (P=0.000227). Furthermore, 17 overexpressed genes were identified on the 21q21‑22 area, including COL6A2, TTC3 and ABCG1. Together, these observations suggest that 17 upregulated genes on HC21 may be involved in the development of DS and provide the basis for understanding this disability.
Collapse
Affiliation(s)
- Xiang-Dong Kong
- Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ning Liu
- Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xue-Ju Xu
- Department of Paediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhen-Hua Zhao
- Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Miao Jiang
- Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
10
|
Abstract
A strict physiological balance between endogenous proangiogenic and antiangiogenic factors controls endothelial cell functions, such that endothelial cell growth is normally restrained. However, in pathologic angiogenesis, a shift occurs in the balance of regulators, favoring endothelial growth. Much of the control of angiogenic events is instigated through hypoxia-induced VEGF expression. The ubiquitin-proteasome system (UPS) plays a central role in fine-tuning the functions of core proangiogenic proteins, including VEGF, VEGFR-2, angiogenic signaling proteins (e.g., the PLCγ1 and PI3 kinase/AKT pathways), and other non-VEGF angiogenic pathways. The emerging mechanisms by which ubiquitin modification of angiogenic proteins control angiogenesis involve both proteolytic and nonproteolytic functions. Here, I review recent advances that link the UPS to regulation of angiogenesis and highlight the potential therapeutic value of the UPS in angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Nader Rahimi
- Department of Pathology, Boston University Medical Campus, 670 Albany St., Room 510, Boston, MA 02118, USA.
| |
Collapse
|
11
|
Wang G, Gao Y, Li L, Jin G, Cai Z, Chao JI, Lin HK. K63-linked ubiquitination in kinase activation and cancer. Front Oncol 2012; 2:5. [PMID: 22649774 PMCID: PMC3355940 DOI: 10.3389/fonc.2012.00005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/10/2012] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination has been demonstrated to play a pivotal role in multiple biological functions, which include cell growth, proliferation, apoptosis, DNA damage response, innate immune response, and neuronal degeneration. Although the role of ubiquitination in targeting proteins for proteasome-dependent degradation have been extensively studied and well-characterized, the critical non-proteolytic functions of ubiquitination, such as protein trafficking and kinase activation, involved in cell survival and cancer development, just start to emerge, In this review, we will summarize recent progresses in elucidating the non-proteolytic function of ubiquitination signaling in protein kinase activation and its implications in human cancers. The advancement in the understanding of the novel functions of ubiquitination in signal transduction pathways downstream of growth factor receptors may provide novel paradigms for the treatment of human cancers.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Deactivation of Akt by a small molecule inhibitor targeting pleckstrin homology domain and facilitating Akt ubiquitination. Proc Natl Acad Sci U S A 2011; 108:6486-91. [PMID: 21464312 DOI: 10.1073/pnas.1019062108] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The phosphatidylinositol-3,4,5-triphosphate (PIP3) binding function of pleckstrin homology (PH) domain is essential for the activation of oncogenic Akt/PKB kinase. Following the PIP3-mediated activation at the membrane, the activated Akt is subjected to other regulatory events, including ubiquitination-mediated deactivation. Here, by identifying and characterizing an allosteric inhibitor, SC66, we show that the facilitated ubiquitination effectively terminates Akt signaling. Mechanistically, SC66 manifests a dual inhibitory activity that directly interferes with the PH domain binding to PIP3 and facilitates Akt ubiquitination. A known PH domain-dependent allosteric inhibitor, which stabilizes Akt, prevents the SC66-induced Akt ubiquitination. A cancer-relevant Akt1 (e17k) mutant is unstable, making it intrinsically sensitive to functional inhibition by SC66 in cellular contexts in which the PI3K inhibition has little inhibitory effect. As a result of its dual inhibitory activity, SC66 manifests a more effective growth suppression of transformed cells that contain a high level of Akt signaling, compared with other inhibitors of PIP3/Akt pathway. Finally, we show the anticancer activity of SC66 by using a soft agar assay as well as a mouse xenograft tumor model. In conclusion, in this study, we not only identify a dual-function Akt inhibitor, but also demonstrate that Akt ubiquitination could be chemically exploited to effectively facilitate its deactivation, thus identifying an avenue for pharmacological intervention in Akt signaling.
Collapse
|
13
|
Yang WL, Zhang X, Lin HK. Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene 2010; 29:4493-503. [PMID: 20531303 PMCID: PMC3008764 DOI: 10.1038/onc.2010.190] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/01/2010] [Accepted: 04/21/2010] [Indexed: 12/31/2022]
Abstract
Ubiquitination is an important post-translational modification that has a pivotal role in numerous biological functions, such as cell growth, proliferation, apoptosis, DNA damage response, innate immune response and neuron degeneration. Although ubiquitination is thought to achieve these functions by targeting proteins for proteasome-dependent degradation, recent studies suggest that ubiquitination also has nonproteolytic functions, such as protein trafficking, kinase and phosphatase activation, which are involved in cell survival and cancer development. These progresses have advanced our current understanding of the novel functions of ubiquitination in signal transduction pathways and may provide novel paradigms for the treatment of human cancers.
Collapse
Affiliation(s)
- Wei-Lei Yang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Xian Zhang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Hui-Kuan Lin
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|