1
|
Barman P, Chakraborty P, Guha S, Kaja A, Bhaumik R, Bhaumik SR. TAP-MS analysis of FACT interactions and regulation by a ubiquitin ligase, San1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195077. [PMID: 39855624 DOI: 10.1016/j.bbagrm.2025.195077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
An evolutionarily conserved heterodimeric FACT (Facilitates chromatin transcription) regulates transcription, DNA repair, replication and other cellular processes via its interactions with other proteins. FACT is recently found to be regulated via ubiquitylation and 26S proteasomal degradation, alteration of which is associated with aberrant transcription and genome integrity. However, there has not been a systematic study to analyze FACT interactions proteome-wide in the presence and absence of its UPS (Ubiquitin-proteasome system) regulation, which could reveal new FACT interactors with mechanistic and functional implications. Here, we have adopted a proteome-wide approach via TAP (Tandem affinity purification)-mediated pull-down of FACT and its interactors from the soluble and insoluble cellular fractions followed by MS (Mass-spectrometry) analysis. We find distinct interactors of FACT in the soluble and insoluble fractions in addition to a common set in both. While a set of all these interactors overlaps with previously known FACT partners, many are new, which are involved in different cellular processes such as transcription, DNA repair and chromatin regulation. Further, an intrinsically disordered ubiquitin ligase, San1, that ubiquitylates the Spt16 component of FACT for proteasomal degradation to regulate chromatin, transcription and genome integrity is found to influence the interactions of FACT with a set of proteins including epigenetic, transcription and DNA repair factors. Collectively, our results unveil proteome-wide FACT interactions and regulation by a ubiquitin ligase, hence shedding much light on FACT networks with functional and mechanistic implications.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA.
| |
Collapse
|
2
|
Zhang Z, Zhang F, Xiong T. Evolution of the chromatin remodeling complex FACT: Functional analysis of SSRP1 and SPT16 in early anther development. Int J Biol Macromol 2025; 284:138167. [PMID: 39615716 DOI: 10.1016/j.ijbiomac.2024.138167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
Facilitates chromatin transcription (FACT) is a histone chaperone composed of SSRP1 and SPT16, which regulates both vegetative and reproductive development in plants. However, its evolutionary history and specific role in anther development remain unexplored. We conducted a comprehensive molecular evolutionary analysis of the SSRP1 and SPT16 genes across eukaryotes, revealing their redundant functions in anther development. SSRP1 and SPT16 have similar evolutionary patterns that originated before plants, animals, and fungi split. Both SSRP1 and SPT16 genes maintained single-copy numbers in animals and fungi, while in plants they were expanded. One gene duplication has occurred in poaceae for SPT16, and one gene duplication has occurred in both monocot and eudicot for SSRP1, respectively. Segmental duplication was the main mechanism for amplifying of SSRP1 and SPT16 in plants. SSRP1 and SPT16 showed similar spatial-temporal expression patterns in anthers. Both the single mutants of ssrp1 and spt16 reduced the numbers of stamens and anther lobes, and the double mutant exhibited more severe anther phenotypes, indicating their redundant functions in male fertility. Our studies provide a deeper understanding of the phylogenetic relationships of SSRP1 and SPT16 genes in eukaryotes and indicate that SSRP1 and SPT16 function in the same pathway to regulate anther lobe formation and anther cell differentiation.
Collapse
Affiliation(s)
- Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
| | - Fang Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| |
Collapse
|
3
|
Obermeyer S, Kapoor H, Markusch H, Grasser KD. Transcript elongation by RNA polymerase II in plants: factors, regulation and impact on gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:645-656. [PMID: 36703573 DOI: 10.1111/tpj.16115] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Transcriptional elongation by RNA polymerase II (RNAPII) through chromatin is a dynamic and highly regulated step of eukaryotic gene expression. A combination of transcript elongation factors (TEFs) including modulators of RNAPII activity and histone chaperones facilitate efficient transcription on nucleosomal templates. Biochemical and genetic analyses, primarily performed in Arabidopsis, provided insight into the contribution of TEFs to establish gene expression patterns during plant growth and development. In addition to summarising the role of TEFs in plant gene expression, we emphasise in our review recent advances in the field. Thus, mechanisms are presented how aberrant intragenic transcript initiation is suppressed by repressing transcriptional start sites within coding sequences. We also discuss how transcriptional interference of ongoing transcription with neighbouring genes is prevented. Moreover, it appears that plants make no use of promoter-proximal RNAPII pausing in the way mammals do, but there are nucleosome-defined mechanism(s) that determine the efficiency of mRNA synthesis by RNAPII. Accordingly, a still growing number of processes related to plant growth, development and responses to changing environmental conditions prove to be regulated at the level of transcriptional elongation.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Henna Kapoor
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Hanna Markusch
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| |
Collapse
|
4
|
Barman P, Bhaumik SR. Facilitates Chromatin Transcription in Breast and Other Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1465:71-88. [PMID: 39586994 DOI: 10.1007/978-3-031-66686-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Eukaryotic genome is packaged into chromatin. Thus, transcription takes place in the context of chromatin that is an array of nucleosomes. Nucleosome poses a barrier for the gene regulatory factors to access DNA for transcription to occur. Fortunately, eukaryotic cells have evolved mechanisms of nucleosomal disassembly and reassembly for transcription through chromatin. Such nucleosomal alteration in controlling transcription is governed by a heterodimeric chromatin remodeling factor, FACT (facilitates chromatin transcription), which is evolutionarily conserved from yeast to humans. FACT facilitates chromatin disassembly at the promoter and reassembly at the open reading frame. Such chromatin regulatory functions of FACT promote transcription. Likewise, other DNA transacting processes such as DNA replication and repair are also regulated by FACT via modulation of chromatin dynamics. Intriguingly, FACT is found to be upregulated in breast and other cancers with oncogenic potential. Thus, FACT and/or its upstream regulatory pathways/factors can be employed for cancer prognosis and targeted for an effective cancer therapy. Further, FACT is found to be downregulated and/or mutated in various cancers including breast cancer. Here, we describe FACT and its involvement in breast and other cancers with prognostic and targeted therapeutic implications.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, USA.
| |
Collapse
|
5
|
Frost JM, Lee J, Hsieh PH, Lin SJH, Min Y, Bauer M, Runkel AM, Cho HT, Hsieh TF, Fischer RL, Choi Y. H2A.X promotes endosperm-specific DNA methylation in Arabidopsis thaliana. BMC PLANT BIOLOGY 2023; 23:585. [PMID: 37993808 PMCID: PMC10664615 DOI: 10.1186/s12870-023-04596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND H2A.X is an H2A variant histone in eukaryotes, unique for its ability to respond to DNA damage, initiating the DNA repair pathway. H2A.X replacement within the histone octamer is mediated by the FAcilitates Chromatin Transactions (FACT) complex, a key chromatin remodeler. FACT is required for DEMETER (DME)-mediated DNA demethylation at certain loci in Arabidopsis thaliana female gametophytes during reproduction. Here, we sought to investigate whether H2A.X is involved in DME- and FACT-mediated DNA demethylation during reproduction. RESULTS H2A.X is encoded by two genes in Arabidopsis genome, HTA3 and HTA5. We generated h2a.x double mutants, which displayed a normal growth profile, whereby flowering time, seed development, and root tip organization, S-phase progression and proliferation were all normal. However, h2a.x mutants were more sensitive to genotoxic stress, consistent with previous reports. H2A.X fused to Green Fluorescent Protein (GFP) under the H2A.X promoter was highly expressed especially in newly developing Arabidopsis tissues, including in male and female gametophytes, where DME is also expressed. We examined DNA methylation in h2a.x developing seeds and seedlings using whole genome bisulfite sequencing, and found that CG DNA methylation is decreased genome-wide in h2a.x mutant endosperm. Hypomethylation was most striking in transposon bodies, and occurred on both parental alleles in the developing endosperm, but not the embryo or seedling. h2a.x-mediated hypomethylated sites overlapped DME targets, but also included other loci, predominately located in heterochromatic transposons and intergenic DNA. CONCLUSIONS Our genome-wide methylation analyses suggest that H2A.X could function in preventing access of the DME demethylase to non-canonical sites. Overall, our data suggest that H2A.X is required to maintain DNA methylation homeostasis in the unique chromatin environment of the Arabidopsis endosperm.
Collapse
Affiliation(s)
- Jennifer M Frost
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Present Address: Genomics and Child Health, Queen Mary University of London, London, UK.
| | - Jaehoon Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Ping-Hung Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Present Address: DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA
| | - Samuel J H Lin
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Yunsook Min
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Matthew Bauer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Anne M Runkel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Robert L Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea.
| |
Collapse
|
6
|
Frost JM, Lee J, Hsieh PH, Lin SJH, Min Y, Bauer M, Runkel AM, Cho HT, Hsieh TF, Fischer RL, Choi Y. H2A.X promotes endosperm-specific DNA methylation in Arabidopsis thaliana. RESEARCH SQUARE 2023:rs.3.rs-2974671. [PMID: 37333181 PMCID: PMC10275051 DOI: 10.21203/rs.3.rs-2974671/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background H2A.X is an H2A variant histone in eukaryotes, unique for its ability to respond to DNA damage, initiating the DNA repair pathway. H2A.X replacement within the histone octamer is mediated by the FAcilitates Chromatin Transactions (FACT) complex, a key chromatin remodeler. FACT is required for DEMETER (DME)-mediated DNA demethylation at certain loci in Arabidopsis thaliana female gametophytes during reproduction. Here, we sought to investigate whether H2A.X is involved in DME- and FACT-mediated DNA demethylation during reproduction. Results H2A.X is encoded by two genes in Arabidopsis genome, HTA3 and HTA5. We generated h2a.x double mutants, which displayed a normal growth profile, whereby flowering time, seed development, and root tip organization, S-phase progression and proliferation were all normal. However, h2a.x mutants were more sensitive to genotoxic stress, consistent with previous reports. H2A.X fused to Green Fluorescent Protein (GFP) under the H2A.X promoter was highly expressed especially in newly developing Arabidopsis tissues, including in male and female gametophytes, where DME is also expressed. We examined DNA methylation in h2a.x developing seeds and seedlings using whole genome bisulfite sequencing, and found that CG DNA methylation is decreased genome-wide in h2a.x mutant seeds. Hypomethylation was most striking in transposon bodies, and occurred on both parental alleles in the developing endosperm, but not the embryo or seedling. h2a.x-mediated hypomethylated sites overlapped DME targets, but also included other loci, predominately located in heterochromatic transposons and intergenic DNA. Conclusions Our genome-wide methylation analyses suggest that H2A.X could function in preventing access of the DME demethylase to non-canonical sites. Alternatively, H2A.X may be involved in recruiting methyltransferases to those sites. Overall, our data suggest that H2A.X is required to maintain DNA methylation homeostasis in the unique chromatin environment of the Arabidopsis endosperm.
Collapse
Affiliation(s)
- Jennifer M Frost
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Jaehoon Lee
- Department of Biological Sciences, Seoul National University
| | - Ping-Hung Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Samuel J H Lin
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Yunsook Min
- Department of Biological Sciences, Seoul National University
| | - Matthew Bauer
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Anne M Runkel
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University
| | - Robert L Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University
| |
Collapse
|
7
|
Han Q, Hung YH, Zhang C, Bartels A, Rea M, Yang H, Park C, Zhang XQ, Fischer RL, Xiao W, Hsieh TF. Loss of linker histone H1 in the maternal genome influences DEMETER-mediated demethylation and affects the endosperm DNA methylation landscape. FRONTIERS IN PLANT SCIENCE 2022; 13:1070397. [PMID: 36618671 PMCID: PMC9813442 DOI: 10.3389/fpls.2022.1070397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The Arabidopsis DEMETER (DME) DNA glycosylase demethylates the central cell genome prior to fertilization. This epigenetic reconfiguration of the female gamete companion cell establishes gene imprinting in the endosperm and is essential for seed viability. DME demethylates small and genic-flanking transposons as well as intergenic and heterochromatin sequences, but how DME is recruited to these loci remains unknown. H1.2 was identified as a DME-interacting protein in a yeast two-hybrid screen, and maternal genome H1 loss affects DNA methylation and expression of selected imprinted genes in the endosperm. Yet, the extent to which H1 influences DME demethylation and gene imprinting in the Arabidopsis endosperm has not been investigated. Here, we showed that without the maternal linker histones, DME-mediated demethylation is facilitated, particularly in the heterochromatin regions, indicating that H1-bound heterochromatins are barriers for DME demethylation. Loss of H1 in the maternal genome has a very limited effect on gene transcription or gene imprinting regulation in the endosperm; however, it variably influences euchromatin TE methylation and causes a slight hypermethylation and a reduced expression in selected imprinted genes. We conclude that loss of maternal H1 indirectly influences DME-mediated demethylation and endosperm DNA methylation landscape but does not appear to affect endosperm gene transcription and overall imprinting regulation.
Collapse
Affiliation(s)
- Qiang Han
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Yu-Hung Hung
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Changqing Zhang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Arthur Bartels
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Matthew Rea
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Hanwen Yang
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Christine Park
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Xiang-Qian Zhang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- College of Food Science and Engineering, Foshan University, Foshan, China
| | - Robert L. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Wenyan Xiao
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
8
|
Zhang H, Gong Z, Zhu JK. Active DNA demethylation in plants: 20 years of discovery and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2217-2239. [PMID: 36478523 DOI: 10.1111/jipb.13423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Maintaining proper DNA methylation levels in the genome requires active demethylation of DNA. However, removing the methyl group from a modified cytosine is chemically difficult and therefore, the underlying mechanism of demethylation had remained unclear for many years. The discovery of the first eukaryotic DNA demethylase, Arabidopsis thaliana REPRESSOR OF SILENCING 1 (ROS1), led to elucidation of the 5-methylcytosine base excision repair mechanism of active DNA demethylation. In the 20 years since ROS1 was discovered, our understanding of this active DNA demethylation pathway, as well as its regulation and biological functions in plants, has greatly expanded. These exciting developments have laid the groundwork for further dissecting the regulatory mechanisms of active DNA demethylation, with potential applications in epigenome editing to facilitate crop breeding and gene therapy.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Molecular Plant Genetics, Shanghai Centre for Plant Stress Biology, Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jian-Kang Zhu
- School of Life Sciences, Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
9
|
Chandana BS, Mahto RK, Singh RK, Ford R, Vaghefi N, Gupta SK, Yadav HK, Manohar M, Kumar R. Epigenomics as Potential Tools for Enhancing Magnitude of Breeding Approaches for Developing Climate Resilient Chickpea. Front Genet 2022; 13:900253. [PMID: 35937986 PMCID: PMC9355295 DOI: 10.3389/fgene.2022.900253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Epigenomics has become a significant research interest at a time when rapid environmental changes are occurring. Epigenetic mechanisms mainly result from systems like DNA methylation, histone modification, and RNA interference. Epigenetic mechanisms are gaining importance in classical genetics, developmental biology, molecular biology, cancer biology, epidemiology, and evolution. Epigenetic mechanisms play important role in the action and interaction of plant genes during development, and also have an impact on classical plant breeding programs, inclusive of novel variation, single plant heritability, hybrid vigor, plant-environment interactions, stress tolerance, and performance stability. The epigenetics and epigenomics may be significant for crop adaptability and pliability to ambient alterations, directing to the creation of stout climate-resilient elegant crop cultivars. In this review, we have summarized recent progress made in understanding the epigenetic mechanisms in plant responses to biotic and abiotic stresses and have also tried to provide the ways for the efficient utilization of epigenomic mechanisms in developing climate-resilient crop cultivars, especially in chickpea, and other legume crops.
Collapse
Affiliation(s)
- B. S. Chandana
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | | | - Rebecca Ford
- Center for Planetary Health and Food Security, Griffith University, Brisbane, QLD, Australia
| | - Niloofar Vaghefi
- School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
| | | | | | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Rajendra Kumar
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| |
Collapse
|
10
|
Michl-Holzinger P, Obermeyer S, Markusch H, Pfab A, Ettner A, Bruckmann A, Babl S, Längst G, Schwartz U, Tvardovskiy A, Jensen ON, Osakabe A, Berger F, Grasser KD. Phosphorylation of the FACT histone chaperone subunit SPT16 affects chromatin at RNA polymerase II transcriptional start sites in Arabidopsis. Nucleic Acids Res 2022; 50:5014-5028. [PMID: 35489065 PMCID: PMC9122599 DOI: 10.1093/nar/gkac293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
The heterodimeric histone chaperone FACT, consisting of SSRP1 and SPT16, contributes to dynamic nucleosome rearrangements during various DNA-dependent processes including transcription. In search of post-translational modifications that may regulate the activity of FACT, SSRP1 and SPT16 were isolated from Arabidopsis cells and analysed by mass spectrometry. Four acetylated lysine residues could be mapped within the basic C-terminal region of SSRP1, while three phosphorylated serine/threonine residues were identified in the acidic C-terminal region of SPT16. Mutational analysis of the SSRP1 acetylation sites revealed only mild effects. However, phosphorylation of SPT16 that is catalysed by protein kinase CK2, modulates histone interactions. A non-phosphorylatable version of SPT16 displayed reduced histone binding and proved inactive in complementing the growth and developmental phenotypes of spt16 mutant plants. In plants expressing the non-phosphorylatable SPT16 version we detected at a subset of genes enrichment of histone H3 directly upstream of RNA polymerase II transcriptional start sites (TSSs) in a region that usually is nucleosome-depleted. This suggests that some genes require phosphorylation of the SPT16 acidic region for establishing the correct nucleosome occupancy at the TSS of active genes.
Collapse
Affiliation(s)
- Philipp Michl-Holzinger
- Department of Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Simon Obermeyer
- Department of Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Hanna Markusch
- Department of Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Alexander Pfab
- Department of Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Andreas Ettner
- Department of Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Astrid Bruckmann
- Institute for Biochemistry I, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Sabrina Babl
- Institute for Biochemistry III, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Gernot Längst
- Institute for Biochemistry III, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Centre, Biology and Pre-Clinical Medicine, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Andrey Tvardovskiy
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Akihisa Osakabe
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Klaus D Grasser
- Department of Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
11
|
The Current Status of SSRP1 in Cancer: Tribulation and Road Ahead. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3528786. [PMID: 35463672 PMCID: PMC9020922 DOI: 10.1155/2022/3528786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022]
Abstract
Methods We search PubMed and Web of Sciences with keywords “SSRP1” and “Cancer.” Only English literature was included, and conference papers and abstract were all excluded. Results Transcription factors are classified into three groups based on their DNA binding motifs: simple helix-loop-helix (bHLH), classical zinc fingers (ZF-TFs), and homeodomains. The tumor-suppressive miR-497 (microRNA-497) acted as an undesirable regulator of SSRP1 upregulation, which led to tumor growth. The siRNA (small interfering RNA) knockdown of SSRP1 hindered cell proliferation along with incursion and glioma cell migration. Through the AKT (also known as protein kinase B) signaling pathway, SSRP1 silencing affected cancer apoptosis and cell proliferation. Conclusion The MAPK (mitogen-activated protein kinase) signaling pathway's phosphorylation was suppressed when SSRP1 was depleted. The effect of curaxins on p53 and NF-B (nuclear factor-κB), and their toxicity to cancer cells, is attributable to the FACT (facilitates chromatin transcription) complex's chromatin trapping.
Collapse
|
12
|
Nagata H, Ono A, Tonosaki K, Kawakatsu T, Sato Y, Yano K, Kishima Y, Kinoshita T. Temporal changes in transcripts of miniature inverted-repeat transposable elements during rice endosperm development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1035-1047. [PMID: 35128739 PMCID: PMC9314911 DOI: 10.1111/tpj.15698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The repression of transcription from transposable elements (TEs) by DNA methylation is necessary to maintain genome integrity and prevent harmful mutations. However, under certain circumstances, TEs may escape from the host defense system and reactivate their transcription. In Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), DNA demethylases target the sequences derived from TEs in the central cell, the progenitor cell for the endosperm in the female gametophyte. Genome-wide DNA demethylation is also observed in the endosperm after fertilization. In the present study, we used a custom microarray to survey the transcripts generated from TEs during rice endosperm development and at selected time points in the embryo as a control. The expression patterns of TE transcripts are dynamically up- and downregulated during endosperm development, especially those of miniature inverted-repeat TEs (MITEs). Some TE transcripts were directionally controlled, whereas the other DNA transposons and retrotransposons were not. We also discovered the NUCLEAR FACTOR Y binding motif, CCAAT, in the region near the 5' terminal inverted repeat of Youren, one of the transcribed MITEs in the endosperm. Our results uncover dynamic changes in TE activity during endosperm development in rice.
Collapse
Affiliation(s)
- Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| | - Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
- Faculty of AgricultureIwate University3‐18‐8 UedaMoriokaIwate020‐8550Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization3‐1‐3 Kan‐nondaiTsukubaIbaraki305‐8604Japan
| | - Yutaka Sato
- Genetic Strains Research CenterNational Institute of GeneticsMishima, Shizuoka411‐8540Japan
| | - Kentaro Yano
- Department of Life SciencesSchool of Agriculture, Meiji University1‐1‐1 Higashi‐mitaKawasaki214‐8571Japan
| | - Yuji Kishima
- Research Faculty of AgricultureHokkaido UniversityKita‐9 Nishi‐9Kita‐ku, Sapporo060‐8589Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University641‐12 MaiokaTotsuka, YokohamaKanagawa244‐0813Japan
| |
Collapse
|
13
|
Susaki D, Suzuki T, Maruyama D, Ueda M, Higashiyama T, Kurihara D. Dynamics of the cell fate specifications during female gametophyte development in Arabidopsis. PLoS Biol 2021; 19:e3001123. [PMID: 33770073 PMCID: PMC7997040 DOI: 10.1371/journal.pbio.3001123] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/29/2021] [Indexed: 01/10/2023] Open
Abstract
The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in Arabidopsis thaliana. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar–chalazal (distal–proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of MYB98pro::GFP–MYB98, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and myb98 mutant revealed that the myb98 synergid cells had egg cell–like gene expression profiles. Although in myb98, egg cell–specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell–specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type–specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants. The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Live-cell imaging and transcriptome analysis of single female gametophyte cell reveal novel insights into the dynamics and mechanisms of cell fate specifications in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- * E-mail: (TH); (DK)
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- JST, PRESTO, Nagoya, Japan
- * E-mail: (TH); (DK)
| |
Collapse
|
14
|
Susaki D, Suzuki T, Maruyama D, Ueda M, Higashiyama T, Kurihara D. Dynamics of the cell fate specifications during female gametophyte development in Arabidopsis. PLoS Biol 2021; 19:e3001123. [PMID: 33770073 DOI: 10.1101/2020.04.07.023028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/29/2021] [Indexed: 05/22/2023] Open
Abstract
The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in Arabidopsis thaliana. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar-chalazal (distal-proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of MYB98pro::GFP-MYB98, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and myb98 mutant revealed that the myb98 synergid cells had egg cell-like gene expression profiles. Although in myb98, egg cell-specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell-specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type-specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- JST, PRESTO, Nagoya, Japan
| |
Collapse
|
15
|
Wang P, Yang W, Zhao S, Nashun B. Regulation of chromatin structure and function: insights into the histone chaperone FACT. Cell Cycle 2021; 20:465-479. [PMID: 33590780 DOI: 10.1080/15384101.2021.1881726] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, changes in chromatin accessibility are necessary for chromatin to maintain its highly dynamic nature at different times during the cell cycle. Histone chaperones interact with histones and regulate chromatin dynamics. Facilitates chromatin transcription (FACT) is an important histone chaperone that plays crucial roles during various cellular processes. Here, we analyze the structural characteristics of FACT, discuss how FACT regulates nucleosome/chromatin reorganization and summarize possible functions of FACT in transcription, replication, and DNA repair. The possible involvement of FACT in cell fate determination is also discussed.Abbreviations: FACT: facilitates chromatin transcription, Spt16: suppressor of Ty16, SSRP1: structure-specific recognition protein-1, NTD: N-terminal domain, DD: dimerization domain, MD: middle domain, CTD: C-terminus domain, IDD: internal intrinsically disordered domain, HMG: high mobility group, CID: C-terminal intrinsically disordered domain, Nhp6: non-histone chromosomal protein 6, RNAPII: RNA polymerase II, CK2: casein kinase 2, AID: acidic inner disorder, PIC: pre-initiation complex, IR: ionizing radiation, DDSB: DNA double-strand break, PARlation: poly ADP-ribosylation, BER: base-excision repair, UVSSA: UV-stimulated scaffold protein A, HR: homologous recombination, CAF-1: chromatin assembly factor 1, Asf1: anti-silencing factor 1, Rtt106: regulator of Ty1 transposition protein 106, H3K56ac: H3K56 acetylation, KD: knock down, SETD2: SET domain containing 2, H3K36me3: trimethylation of lysine36 in histone H3, H2Bub: H2B ubiquitination, iPSCs: induced pluripotent stem cells, ESC: embryonic stem cell, H3K4me3: trimethylation of lysine 4 on histone H3 protein subunit, CHD1: chromodomain protein.
Collapse
Affiliation(s)
- Peijun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanting Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shuxin Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
16
|
Verma P, Tandon R, Yadav G, Gaur V. Structural Aspects of DNA Repair and Recombination in Crop Improvement. Front Genet 2020; 11:574549. [PMID: 33024442 PMCID: PMC7516265 DOI: 10.3389/fgene.2020.574549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The adverse effects of global climate change combined with an exponentially increasing human population have put substantial constraints on agriculture, accelerating efforts towards ensuring food security for a sustainable future. Conventional plant breeding and modern technologies have led to the creation of plants with better traits and higher productivity. Most crop improvement approaches (conventional breeding, genome modification, and gene editing) primarily rely on DNA repair and recombination (DRR). Studying plant DRR can provide insights into designing new strategies or improvising the present techniques for crop improvement. Even though plants have evolved specialized DRR mechanisms compared to other eukaryotes, most of our insights about plant-DRRs remain rooted in studies conducted in animals. DRR mechanisms in plants include direct repair, nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination (HR). Although each DRR pathway acts on specific DNA damage, there is crosstalk between these. Considering the importance of DRR pathways as a tool in crop improvement, this review focuses on a general description of each DRR pathway, emphasizing on the structural aspects of key DRR proteins. The review highlights the gaps in our understanding and the importance of studying plant DRR in the context of crop improvement.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Reetika Tandon
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
17
|
Song Q, Ando A, Jiang N, Ikeda Y, Chen ZJ. Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes. Genome Biol 2020; 21:178. [PMID: 32698836 PMCID: PMC7375004 DOI: 10.1186/s13059-020-02094-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Polyploidy provides new genetic material that facilitates evolutionary novelty, species adaptation, and crop domestication. Polyploidy often leads to an increase in cell or organism size, which may affect transcript abundance or transcriptome size, but the relationship between polyploidy and transcriptome changes remains poorly understood. Plant cells often undergo endoreduplication, confounding the polyploid effect. RESULTS To mitigate these effects, we select female gametic cells that are developmentally stable and void of endoreduplication. Using single-cell RNA sequencing (scRNA-seq) in Arabidopsis thaliana tetraploid lines and isogenic diploids, we show that transcriptome abundance doubles in the egg cell and increases approximately 1.6-fold in the central cell, consistent with cell size changes. In the central cell of tetraploid plants, DEMETER (DME) is upregulated, which can activate PRC2 family members FIS2 and MEA, and may suppress the expression of other genes. Upregulation of cell size regulators in tetraploids, including TOR and OSR2, may increase the size of reproductive cells. In diploids, the order of transcriptome abundance is central cell, synergid cell, and egg cell, consistent with their cell size variation. Remarkably, we uncover new sets of female gametophytic cell-specific transcripts with predicted biological roles; the most abundant transcripts encode families of cysteine-rich peptides, implying roles in cell-cell recognition during double fertilization. CONCLUSIONS Transcriptome in single cells doubles in tetraploid plants compared to diploid, while the degree of change and relationship to the cell size depends on cell types. These scRNA-seq resources are free of cross-contamination and are uniquely valuable for advancing plant hybridization, reproductive biology, and polyploid genomics.
Collapse
Affiliation(s)
- Qingxin Song
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Atsumi Ando
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, TX, 78712, USA
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA.
| |
Collapse
|
18
|
Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D, Axelsson E, Kawashima T, Voigt P, Boavida L, Becker J, Higashiyama T, Martienssen R, Berger F. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat Cell Biol 2020; 22:621-629. [PMID: 32393884 PMCID: PMC7116658 DOI: 10.1038/s41556-020-0515-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Epigenetic marks are reprogrammed in the gametes to reset genomic potential in the next generation. In mammals, paternal chromatin is extensively reprogrammed through the global erasure of DNA methylation and the exchange of histones with protamines1,2. Precisely how the paternal epigenome is reprogrammed in flowering plants has remained unclear since DNA is not demethylated and histones are retained in sperm3,4. Here, we describe a multi-layered mechanism by which H3K27me3 is globally lost from histone-based sperm chromatin in Arabidopsis. This mechanism involves the silencing of H3K27me3 writers, activity of H3K27me3 erasers and deposition of a sperm-specific histone, H3.10 (ref. 5), which we show is immune to lysine 27 methylation. The loss of H3K27me3 facilitates the transcription of genes essential for spermatogenesis and pre-configures sperm with a chromatin state that forecasts gene expression in the next generation. Thus, plants have evolved a specific mechanism to simultaneously differentiate male gametes and reprogram the paternal epigenome.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Yannick Jacob
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Daichi Susaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Chantal LeBlanc
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Daniel Buendía
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Tomokazu Kawashima
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Philipp Voigt
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - Leonor Boavida
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Jörg Becker
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Robert Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
19
|
Thomas QA, Ard R, Liu J, Li B, Wang J, Pelechano V, Marquardt S. Transcript isoform sequencing reveals widespread promoter-proximal transcriptional termination in Arabidopsis. Nat Commun 2020; 11:2589. [PMID: 32444691 PMCID: PMC7244574 DOI: 10.1038/s41467-020-16390-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 04/29/2020] [Indexed: 01/22/2023] Open
Abstract
RNA polymerase II (RNAPII) transcription converts the DNA sequence of a single gene into multiple transcript isoforms that may carry alternative functions. Gene isoforms result from variable transcription start sites (TSSs) at the beginning and polyadenylation sites (PASs) at the end of transcripts. How alternative TSSs relate to variable PASs is poorly understood. Here, we identify both ends of RNA molecules in Arabidopsis thaliana by transcription isoform sequencing (TIF-seq) and report four transcript isoforms per expressed gene. While intragenic initiation represents a large source of regulated isoform diversity, we observe that ~14% of expressed genes generate relatively unstable short promoter-proximal RNAs (sppRNAs) from nascent transcript cleavage and polyadenylation shortly after initiation. The location of sppRNAs correlates with the position of promoter-proximal RNAPII stalling, indicating that large pools of promoter-stalled RNAPII may engage in transcriptional termination. We propose that promoter-proximal RNAPII stalling-linked to premature transcriptional termination may represent a checkpoint that governs plant gene expression.
Collapse
Affiliation(s)
- Quentin Angelo Thomas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ryan Ard
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jinghan Liu
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Bingnan Li
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Jingwen Wang
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
20
|
Grasser KD. The FACT Histone Chaperone: Tuning Gene Transcription in the Chromatin Context to Modulate Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2020; 11:85. [PMID: 32140163 PMCID: PMC7042381 DOI: 10.3389/fpls.2020.00085] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/21/2020] [Indexed: 05/20/2023]
Abstract
FACT is a heterodimeric histone chaperone consisting of the SSRP1 and SPT16 proteins and is conserved among eukaryotes. It interacts with the histones H2A-H2B and H3-H4 as well as with DNA. Based on in vitro and in vivo studies mainly in yeast and mammalian cells, FACT can mediate nucleosome disassembly and reassembly and thus facilitates in the chromatin context DNA-dependent processes including transcription, replication and repair. In plants, primarily the role of FACT related to RNA polymerase II transcription has been examined. FACT was found to associate with elongating Arabidopsis RNA polymerase II (RNAPII) as part of the transcript elongation complex and it was identified as repressor of aberrant intragenic transcriptional initiation. Arabidopsis mutants depleted in FACT subunits exhibit various defects in vegetative and reproductive development. Strikingly, FACT modulates important developmental transitions by promoting expression of key repressors of these processes. Thus, FACT facilitates expression of DOG1 and FLC adjusting the switch from seed dormancy to germination and from vegetative to reproductive development, respectively. In the central cell of the female gametophyte, FACT can facilitate DNA demethylation especially within heterochromatin, and thereby contributes to gene imprinting during Arabidopsis reproduction. This review discusses results particularly from the plant perspective about the contribution of FACT to processes that involve reorganisation of nucleosomes with a main focus on RNAPII transcription and its implications for diverse areas of plant biology.
Collapse
|
21
|
Nuclear Chaperone ASF1 is Required for Gametogenesis in Arabidopsis thaliana. Sci Rep 2019; 9:13959. [PMID: 31562367 PMCID: PMC6764951 DOI: 10.1038/s41598-019-50450-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Sexual reproduction in flowering plants is distinct from that in animals since gametogenesis requires production of haploid spores, which divide and differentiate into specialised gametophyte structures. Anti-Silencing Function 1 (ASF1) is a histone H3/H4 chaperone involved in chromatin remodeling during cell division, which we have found plays a critical role in gametophyte development in Arabidopsis thaliana. Using mutant alleles for the two ASF1 homologs, asf1a and asf1b, we show that ASF1 is required for successful development of gametophytes and acquisition of fertilisation competency. On the female side, reproductive failure is caused by aberrant development of ovules, leading to gamete degeneration. On the male side, we show both in vitro and in vivo that asf1 mutant pollen tube growth is stunted, limiting fertilisation to ovules nearest the stigma. Consistent with ASF1 importance in gametogenesis, we show that ASF1A and ASF1B are expressed throughout female and male gametogenesis. We show that the gametogenesis defects can be corrected by ASF1A and ASF1B transgenes, and that ASF1A and ASF1B act redundantly. Thus, in contrast to the role of ASF1 in sporophytic cell cycle progression, our data indicate that during reproduction, ASF1 is required for the precise nuclei differentiation necessary for gametophyte maturation and fertilisation.
Collapse
|
22
|
Zhang C, Hung YH, Rim HJ, Zhang D, Frost JM, Shin H, Jang H, Liu F, Xiao W, Iyer LM, Aravind L, Zhang XQ, Fischer RL, Huh JH, Hsieh TF. The catalytic core of DEMETER guides active DNA demethylation in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:17563-17571. [PMID: 31409710 PMCID: PMC6717269 DOI: 10.1073/pnas.1907290116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Arabidopsis DEMETER (DME) DNA glycosylase demethylates the maternal genome in the central cell prior to fertilization and is essential for seed viability. DME preferentially targets small transposons that flank coding genes, influencing their expression and initiating plant gene imprinting. DME also targets intergenic and heterochromatic regions, but how it is recruited to these differing chromatin landscapes is unknown. The C-terminal half of DME consists of 3 conserved regions required for catalysis in vitro. We show that this catalytic core guides active demethylation at endogenous targets, rescuing dme developmental and genomic hypermethylation phenotypes. However, without the N terminus, heterochromatin demethylation is significantly impeded, and abundant CG-methylated genic sequences are ectopically demethylated. Comparative analysis revealed that the conserved DME N-terminal domains are present only in flowering plants, whereas the domain architecture of DME-like proteins in nonvascular plants mainly resembles the catalytic core, suggesting that it might represent the ancestral form of the 5mC DNA glycosylase found in plant lineages. We propose a bipartite model for DME protein action and suggest that the DME N terminus was acquired late during land plant evolution to improve specificity and facilitate demethylation at heterochromatin targets.
Collapse
Affiliation(s)
- Changqing Zhang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081
| | - Yu-Hung Hung
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081
| | - Hyun Jung Rim
- Department of Plant Science, Seoul National University, 08826 Seoul, Republic of Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, 08826 Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, 08826 Seoul, Republic of Korea
| | - Dapeng Zhang
- Department of Biology, St. Louis University, St. Louis, MO 63103
| | - Jennifer M Frost
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Hosub Shin
- Department of Plant Science, Seoul National University, 08826 Seoul, Republic of Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, 08826 Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, 08826 Seoul, Republic of Korea
| | - Hosung Jang
- Department of Plant Science, Seoul National University, 08826 Seoul, Republic of Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, 08826 Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, 08826 Seoul, Republic of Korea
| | - Fang Liu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 530004 Nanning, China
| | - Wenyan Xiao
- Department of Biology, St. Louis University, St. Louis, MO 63103
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Xiang-Qian Zhang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695;
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081
- College of Forestry and Landscape Architecture, South China Agricultural University, 510642 Guangzhou, China
| | - Robert L Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
| | - Jin Hoe Huh
- Department of Plant Science, Seoul National University, 08826 Seoul, Republic of Korea;
- Research Institute for Agriculture and Life Sciences, Seoul National University, 08826 Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, 08826 Seoul, Republic of Korea
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695;
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081
| |
Collapse
|
23
|
Transcription-driven chromatin repression of Intragenic transcription start sites. PLoS Genet 2019; 15:e1007969. [PMID: 30707695 PMCID: PMC6373976 DOI: 10.1371/journal.pgen.1007969] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/13/2019] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
Progression of RNA polymerase II (RNAPII) transcription relies on the appropriately positioned activities of elongation factors. The resulting profile of factors and chromatin signatures along transcription units provides a “positional information system” for transcribing RNAPII. Here, we investigate a chromatin-based mechanism that suppresses intragenic initiation of RNAPII transcription. We demonstrate that RNAPII transcription across gene promoters represses their function in plants. This repression is characterized by reduced promoter-specific molecular signatures and increased molecular signatures associated with RNAPII elongation. The conserved FACT histone chaperone complex is required for this repression mechanism. Genome-wide Transcription Start Site (TSS) mapping reveals thousands of discrete intragenic TSS positions in fact mutants, including downstream promoters that initiate alternative transcript isoforms. We find that histone H3 lysine 4 mono-methylation (H3K4me1), an Arabidopsis RNAPII elongation signature, is enriched at FACT-repressed intragenic TSSs. Our analyses suggest that FACT is required to repress intragenic TSSs at positions that are in part characterized by elevated H3K4me1 levels. In sum, conserved and plant-specific chromatin features correlate with the co-transcriptional repression of intragenic TSSs. Our insights into TSS repression by RNAPII transcription promise to inform the regulation of alternative transcript isoforms and the characterization of gene regulation through the act of pervasive transcription across eukaryotic genomes. Genes represent DNA elements that are transcribed into mRNA. However, the position where transcription actually starts can be dynamically regulated to expand the diversity of RNA isoforms produced from a single gene. Functionally, alternative Transcription Start Sites (TSSs) may generate protein isoforms with differing N-terminal regions and distinct cellular functions. In plants, light signaling regulates protein isoforms largely through regulated TSS selection, emphasizing the biological significance of this mechanism. Despite the importance of alternative TSS selection, little is known about the underlying molecular mechanisms. Here, we characterize for the first time how transcription initiation from an upstream promoter represses alternative downstream promoter activity in plants. This repression mechanism is associated with chromatin changes that are required to maintain precise gene expression control. Specific chromatin signatures are established during transcription via dynamic interactions between the transcription machinery and associated factors. The conserved histone chaperone complex FACT is one such factor involved in regulating the chromatin environment along genes during transcription. We find that mutant plants with reduced FACT activity specifically initiate transcription from thousands of intragenic positions, thus expanding RNA isoform diversity. Overall, our study reveals conserved and plant-specific chromatin features associated with the co-transcriptional repression of downstream intragenic TSSs. These findings promise to help inform the molecular mechanism underlying environmentally-triggered TSS regulation in plants.
Collapse
|
24
|
Jiang H, Xu S, Chen Y, Li H, Tian L, Zhou H, Zhao Z, Yang C, Zhong Z, Cai G, Su D. The structural basis of human Spt16 N-terminal domain interaction with histone (H3-H4) 2 tetramer. Biochem Biophys Res Commun 2018; 508:864-870. [PMID: 30528735 DOI: 10.1016/j.bbrc.2018.11.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023]
Abstract
FACT (Facilitates Chromatin Transactions) is a heterodimeric protein complex involved in RNA polymerase II transcription elongation, playing essential roles in chromatin remodeling during transcription, replication, and DNA damage repair. The FACT subunit hSpt16 is essential for nucleosome reorganization. The N-terminal domain of hSpt16 (hSpt16-NTD) was recently described as a histone (H3-H4)2-binding domain; however, its mode of interaction remains unknown. In this study, we solved the structure of hSpt16-NTD437 at 2.19 Å and found that a long-disordered region (hSpt16-LDR), after the main body of hSpt16-NTD, is a novel histone-binding motif. Furthermore, hSpt16-LDR interaction with (H3-H4)2 is H3 N-terminal tail-independent. Therefore, Spt16-NTD is a histone H3-H4-specific binding domain with a distinct mechanism of interaction between histones and histone chaperones.
Collapse
Affiliation(s)
- Hua Jiang
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Sidan Xu
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yiping Chen
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Huiyan Li
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Lu Tian
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hongying Zhou
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Zhiwei Zhao
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Zhihui Zhong
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Guocai Cai
- Department of Cardiovascular Medicine, The Third Hospital of MianYang (Sichuan Mental Health Center), Sichuan, 621000, PR China
| | - Dan Su
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
25
|
|
26
|
Four putative SWI2/SNF2 chromatin remodelers have dual roles in regulating DNA methylation in Arabidopsis. Cell Discov 2018; 4:55. [PMID: 30345072 PMCID: PMC6189096 DOI: 10.1038/s41421-018-0056-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022] Open
Abstract
DNA methylation is a conserved epigenetic mark that is critical for many biological processes in plants and mammals. In Arabidopsis, the antagonistic activities of RNA-directed DNA methylation (RdDM) and ROS1-dependent active DNA demethylation are key for the dynamic regulation of locus-specific DNA methylation. However, the molecular factors that coordinate RdDM and active demethylation are largely unknown. Here we report that CLSY4 and its three paralogous SWI2/SNF2-type chromatin-remodeling proteins function in both RdDM and DNA demethylation in Arabidopsis. We initially identified CLSY4 in a genetic screen for DNA demethylation factors and subsequently demonstrated that it also is important in RdDM. Comprehensive genetic analyses using single and high order mutants of CLSY family proteins revealed their roles as double agents in the balance between methylation and demethylation reactions. The four CLSY proteins collectively are necessary for the canonical RdDM pathway; at the same time, each CLSY likely mediates DNA demethylation at specific loci where DNA methylation depends on RdDM. These results indicate that the four chromatin-remodeling proteins have dual functions in regulating genomic DNA methylation, and thus provide new insights into the dynamic regulation of DNA methylation in a model multicellular eukaryotic organism.
Collapse
|
27
|
Pfab A, Grønlund JT, Holzinger P, Längst G, Grasser KD. The Arabidopsis Histone Chaperone FACT: Role of the HMG-Box Domain of SSRP1. J Mol Biol 2018; 430:2747-2759. [PMID: 29966609 DOI: 10.1016/j.jmb.2018.06.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/15/2022]
Abstract
Histone chaperones play critical roles in regulated structural transitions of chromatin in eukaryotic cells that involve nucleosome disassembly and reassembly. The histone chaperone FACT is a heterodimeric complex consisting in plants and metazoa of SSRP1/SPT16 and is involved in dynamic nucleosome reorganization during various DNA-dependent processes including transcription, replication and repair. The C-terminal HMG-box domain of the SSRP1 subunit mediates interactions with DNA and nucleosomes in vitro, but its relevance in vivo is unclear. Here, we demonstrate that Arabidopsis ssrp1-2 mutant plants express a C-terminally truncated SSRP1 protein. Although the structure of the truncated HMG-box domain is distinctly disturbed, it still exhibits residual DNA-binding activity, but has lost DNA-bending activity. Since ssrp1-2 plants are phenotypically affected but viable, the HMG-box domain may be functionally non-essential. To examine this possibility, SSRP1∆HMG completely lacking the HMG-box domain was studied. SSRP1∆HMG in vitro did not bind to DNA and its interactions with nucleosomes were severely reduced. Nevertheless, the protein showed a nuclear mobility and protein interactions similar to SSRP1. Interestingly, expression of SSRP1∆HMG is almost as efficient as that of full-length SSRP1 in supporting normal growth and development of the otherwise non-viable Arabidopsis ssrp1-1 mutant. SSRP1∆HMG is structurally similar to the fungal ortholog termed Pob3 that shares clear similarity with SSRP1, but it lacks the C-terminal HMG-box. Therefore, our findings indicate that the HMG-box domain conserved among SSRP1 proteins is not critical in Arabidopsis, and thus, the functionality of SSRP1/SPT16 in plants/metazoa and Pob3/Spt16 in fungi is perhaps more similar than anticipated.
Collapse
Affiliation(s)
- Alexander Pfab
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Jesper T Grønlund
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | - Philipp Holzinger
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Gernot Längst
- Department of Biochemistry III, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany.
| |
Collapse
|
28
|
Marcianò G, Da Vela S, Tria G, Svergun DI, Byron O, Huang DT. Structure-specific recognition protein-1 (SSRP1) is an elongated homodimer that binds histones. J Biol Chem 2018; 293:10071-10083. [PMID: 29764934 PMCID: PMC6028955 DOI: 10.1074/jbc.ra117.000994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/14/2018] [Indexed: 12/31/2022] Open
Abstract
The histone chaperone complex facilitates chromatin transcription (FACT) plays important roles in DNA repair, replication, and transcription. In the formation of this complex, structure-specific recognition protein-1 (SSRP1) heterodimerizes with suppressor of Ty 16 (SPT16). SSRP1 also has SPT16-independent functions, but how SSRP1 functions alone remains elusive. Here, using analytical ultracentrifugation (AUC) and small-angle X-ray scattering (SAXS) techniques, we characterized human SSRP1 and that from the amoeba Dictyostelium discoideum and show that both orthologs form an elongated homodimer in solution. We found that substitutions in the SSRP1 pleckstrin homology domain known to bind SPT16 also disrupt SSRP1 homodimerization. Moreover, AUC and SAXS analyses revealed that SSRP1 homodimerization and heterodimerization with SPT16 (resulting in FACT) involve the same SSRP1 surface, namely the PH2 region, and that the FACT complex contains only one molecule of SSRP1. These observations suggest that SSRP1 homo- and heterodimerization might be mutually exclusive. Moreover, isothermal titration calorimetry analyses disclosed that SSRP1 binds both histones H2A-H2B and H3-H4 and that disruption of SSRP1 homodimerization decreases its histone-binding affinity. Together, our results provide evidence for regulation of SSRP1 by homodimerization and suggest a potential role for homodimerization in facilitating SPT16-independent functions of SSRP1.
Collapse
Affiliation(s)
- Gabriele Marcianò
- From the Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, and the Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, Scotland, United Kingdom,
| | - Stefano Da Vela
- the European Molecular Biology Laboratory, Hamburg Outstation, EMBL ℅ DESY, Notkestrasse 85, 22607 Hamburg, Germany, and
| | - Giancarlo Tria
- the European Molecular Biology Laboratory, Hamburg Outstation, EMBL ℅ DESY, Notkestrasse 85, 22607 Hamburg, Germany, and
| | - Dmitri I Svergun
- the European Molecular Biology Laboratory, Hamburg Outstation, EMBL ℅ DESY, Notkestrasse 85, 22607 Hamburg, Germany, and
| | - Olwyn Byron
- the School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Danny T Huang
- From the Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, and the Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, Scotland, United Kingdom,
| |
Collapse
|
29
|
Dong X, Chen J, Li T, Li E, Zhang X, Zhang M, Song W, Zhao H, Lai J. Parent-of-origin-dependent nucleosome organization correlates with genomic imprinting in maize. Genome Res 2018; 28:1020-1028. [PMID: 29903724 PMCID: PMC6028132 DOI: 10.1101/gr.230201.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Genomic imprinting refers to allele-specific expression of genes depending on their parental origin. Nucleosomes, the fundamental units of chromatin, play a critical role in gene transcriptional regulation. However, it remains unknown whether differential nucleosome organization is related to the allele-specific expression of imprinted genes. Here, we generated a genome-wide map of allele-specific nucleosome occupancy in maize endosperm and presented an integrated analysis of its relationship with parent-of-origin-dependent gene expression and DNA methylation. We found that ∼2.3% of nucleosomes showed significant parental bias in maize endosperm. The parent-of-origin-dependent nucleosomes mostly exist as single isolated nucleosomes. Parent-of-origin-dependent nucleosomes were significantly associated with the allele-specific expression of imprinted genes, with nucleosomes positioned preferentially in the promoter of nonexpressed alleles of imprinted genes. Furthermore, we found that most of the paternal specifically positioned nucleosomes (pat-nucleosomes) were associated with parent-of-origin-dependent differential methylated regions, suggesting a functional link between the maternal demethylation and the occurrence of pat-nucleosome. Maternal specifically positioned nucleosomes (mat-nucleosomes) were independent of allele-specific DNA methylation but seem to be associated with allele-specific histone modification. Our study provides the first genome-wide map of allele-specific nucleosome occupancy in plants and suggests a mechanistic connection between chromatin organization and genomic imprinting.
Collapse
Affiliation(s)
- Xiaomei Dong
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Tong Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - En Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiangbo Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mei Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.,Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
30
|
FACT complex is required for DNA demethylation at heterochromatin during reproduction in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E4720-E4729. [PMID: 29712855 PMCID: PMC5960277 DOI: 10.1073/pnas.1713333115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The DEMETER (DME) DNA glycosylase catalyzes genome-wide DNA demethylation and is required for endosperm genomic imprinting and embryo viability. Targets of DME-mediated DNA demethylation reside in small, euchromatic, AT-rich transposons and at the boundaries of large transposons, but how DME interacts with these diverse chromatin states is unknown. The STRUCTURE SPECIFIC RECOGNITION PROTEIN 1 (SSRP1) subunit of the chromatin remodeler FACT (facilitates chromatin transactions), was previously shown to be involved in the DME-dependent regulation of genomic imprinting in Arabidopsis endosperm. Therefore, to investigate the interaction between DME and chromatin, we focused on the activity of the two FACT subunits, SSRP1 and SUPPRESSOR of TY16 (SPT16), during reproduction in Arabidopsis We found that FACT colocalizes with nuclear DME in vivo, and that DME has two classes of target sites, the first being euchromatic and accessible to DME, but the second, representing over half of DME targets, requiring the action of FACT for DME-mediated DNA demethylation genome-wide. Our results show that the FACT-dependent DME targets are GC-rich heterochromatin domains with high nucleosome occupancy enriched with H3K9me2 and H3K27me1. Further, we demonstrate that heterochromatin-associated linker histone H1 specifically mediates the requirement for FACT at a subset of DME-target loci. Overall, our results demonstrate that FACT is required for DME targeting by facilitating its access to heterochromatin.
Collapse
|
31
|
Li Y, Kumar S, Qian W. Active DNA demethylation: mechanism and role in plant development. PLANT CELL REPORTS 2018; 37:77-85. [PMID: 29026973 PMCID: PMC5758694 DOI: 10.1007/s00299-017-2215-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/05/2017] [Indexed: 05/18/2023]
Abstract
Active DNA demethylation (enzymatic removal of methylated cytosine) regulates many plant developmental processes. In Arabidopsis, active DNA demethylation entails the base excision repair pathway initiated by the Repressor of silencing 1/Demeter family of bifunctional DNA glycosylases. In this review, we first present an introduction to the recent advances in our understanding about the mechanisms of active DNA demethylation. We then focus on the role of active DNA demethylation in diverse developmental processes in various plant species, including the regulation of seed development, pollen tube formation, stomatal development, fruit ripening, and nodule development. Finally, we discuss future directions of research in the area of active DNA demethylation.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
32
|
Attwood K, Fleyshman D, Prendergast L, Paszkiewicz G, Omilian AR, Bshara W, Gurova K. Prognostic value of histone chaperone FACT subunits expression in breast cancer. BREAST CANCER-TARGETS AND THERAPY 2017; 9:301-311. [PMID: 28496363 PMCID: PMC5422336 DOI: 10.2147/bctt.s126390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Understanding the underlying reasons for tumor aggressiveness, such as why some tumors grow slowly and locally, while others rapidly progress to a lethal metastatic disease, is still limited. This is especially critical in breast cancer (BrCa) due to its high prevalence and also due to the possibility that it can be detected early. Several oncogenes and tumor suppressors have been identified and are used in the prognosis and treatment of BrCa. However, even with these markers, the outcome within BrCa subtypes is highly variable. Chromatin organization has long been acknowledged as a factor that plays an important role in tumor progression, but molecular mechanisms defining chromatin dynamics are largely missing. We have recently found that histone chaperone FACT (facilitates chromatin transcription) is overexpressed in ~18–20% of BrCa cases. FACT is elevated upon transformation of mammary epithelial cells and is essential for viability of tumor cells. BrCa cells with high FACT have a more aggressive transcriptional program than those with low FACT cells. Based on this we propose that FACT may be a marker of aggressive BrCa. In this study, we aimed to comprehensively characterize the pattern of FACT expression in BrCa in relation to other molecular and clinical prognostic markers. We developed and tested an assay for the detection and quantitation of protein levels of both FACT subunits, SSRP1, and SPT16, in clinical samples. We compared the value of mRNA and protein as potential markers of disease aggressiveness using a large cohort of patients (n=1092). We demonstrated that only SSRP1 immunohistochemical staining is a reliable indicator of FACT levels in tumor samples. High SSRP1 correlated with known markers of poor prognosis, such as negative hormone receptor status, presence of Her2, high-grade tumors, and tumors of later clinical stage. At the same time, no strong correlation between SSRP1 expression and survival was detected when all samples were analyzed together. Clear trend toward longer survival of patients with low or no SSRP1 expression in tumor samples was seen in several subgroups of patients, and most importantly significant association of high SSRP1 expression with shorter disease-free survival was detected in patients with early-stage and low-grade BrCa, the category of patients with the highest demand in predictive marker of disease progression.
Collapse
Affiliation(s)
| | | | | | | | - Angela R Omilian
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Wiam Bshara
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
33
|
The FACT Complex Promotes Avian Leukosis Virus DNA Integration. J Virol 2017; 91:JVI.00082-17. [PMID: 28122976 DOI: 10.1128/jvi.00082-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/25/2022] Open
Abstract
All retroviruses need to integrate a DNA copy of their genome into the host chromatin. Cellular proteins regulating and targeting lentiviral and gammaretroviral integration in infected cells have been discovered, but the factors that mediate alpharetroviral avian leukosis virus (ALV) integration are unknown. In this study, we have identified the FACT protein complex, which consists of SSRP1 and Spt16, as a principal cellular binding partner of ALV integrase (IN). Biochemical experiments with purified recombinant proteins show that SSRP1 and Spt16 are able to individually bind ALV IN, but only the FACT complex effectively stimulates ALV integration activity in vitro Likewise, in infected cells, the FACT complex promotes ALV integration activity, with proviral integration frequency varying directly with cellular expression levels of the FACT complex. An increase in 2-long-terminal-repeat (2-LTR) circles in the depleted FACT complex cell line indicates that this complex regulates the ALV life cycle at the level of integration. This regulation is shown to be specific to ALV, as disruption of the FACT complex did not inhibit either lentiviral or gammaretroviral integration in infected cells.IMPORTANCE The majority of human gene therapy approaches utilize HIV-1- or murine leukemia virus (MLV)-based vectors, which preferentially integrate near genes and regulatory regions; thus, insertional mutagenesis is a substantial risk. In contrast, ALV integrates more randomly throughout the genome, which decreases the risks of deleterious integration. Understanding how ALV integration is regulated could facilitate the development of ALV-based vectors for use in human gene therapy. Here we show that the FACT complex directly binds and regulates ALV integration efficiency in vitro and in infected cells.
Collapse
|
34
|
Satyaki PRV, Gehring M. DNA methylation and imprinting in plants: machinery and mechanisms. Crit Rev Biochem Mol Biol 2017; 52:163-175. [PMID: 28118754 DOI: 10.1080/10409238.2017.1279119] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Imprinting is an epigenetic phenomenon in which genes are expressed selectively from either the maternal or paternal alleles. In plants, imprinted gene expression is found in a tissue called the endosperm. Imprinting is often set by a unique epigenomic configuration in which the maternal chromosomes are less DNA methylated than their paternal counterparts. In this review, we synthesize studies that paint a detailed molecular portrait of the distinctive endosperm methylome. We will also discuss the molecular machinery that shapes and modifies this methylome, and the role of DNA methylation in imprinting.
Collapse
Affiliation(s)
- P R V Satyaki
- a Whitehead Institute for Biomedical Research , Cambridge , MA , USA
| | - Mary Gehring
- a Whitehead Institute for Biomedical Research , Cambridge , MA , USA.,b Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
35
|
Buzas DM. Emerging links between iron-sulfur clusters and 5-methylcytosine base excision repair in plants. Genes Genet Syst 2016; 91:51-62. [PMID: 27592684 DOI: 10.1266/ggs.16-00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are ancient cofactors present in all kingdoms of life. Both the Fe-S cluster assembly machineries and target apoproteins are distributed across different subcellular compartments. The essential function of Fe-S clusters in nuclear enzymes is particularly difficult to study. The base excision repair (BER) pathway guards the integrity of DNA; enzymes from the DEMETER family of DNA glycosylases in plants are Fe-S cluster-dependent and extend the BER repertowere to excision of 5-methylcytosine (5mC). Recent studies in plants genetically link the majority of proteins from the cytosolic Fe-S cluster biogenesis (CIA) pathway with 5mC BER and DNA repair. This link can now be further explored. First, it opens new possibilities for understanding how Fe-S clusters participate in 5mC BER and related processes. I describe DNA-mediated charge transfer, an Fe-S cluster-based mechanism for locating base lesions with high efficiency, which is used by bacterial DNA glycosylases encoding Fe-S cluster binding domains that are also conserved in the DEMETER family. Second, because detailed analysis of the mutant phenotype of CIA proteins relating to 5mC BER revealed that they formed two groups, we may also gain new insights into both the composition of the Fe-S assembly pathway and the biological contexts of Fe-S proteins.
Collapse
Affiliation(s)
- Diana Mihaela Buzas
- Faculty of Life and Environmental Sciences, Gene Research Center, University of Tsukuba
| |
Collapse
|
36
|
Zhang CJ, Hou XM, Tan LM, Shao CR, Huang HW, Li YQ, Li L, Cai T, Chen S, He XJ. The Arabidopsis acetylated histone-binding protein BRAT1 forms a complex with BRP1 and prevents transcriptional silencing. Nat Commun 2016; 7:11715. [PMID: 27273316 PMCID: PMC4899616 DOI: 10.1038/ncomms11715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/21/2016] [Indexed: 12/20/2022] Open
Abstract
Transposable elements and other repetitive DNA sequences are usually subject to DNA methylation and transcriptional silencing. However, anti-silencing mechanisms that promote transcription in these regions are not well understood. Here, we describe an anti-silencing factor, Bromodomain and ATPase domain-containing protein 1 (BRAT1), which we identified by a genetic screen in Arabidopsis thaliana. BRAT1 interacts with an ATPase domain-containing protein, BRP1 (BRAT1 Partner 1), and both prevent transcriptional silencing at methylated genomic regions. Although BRAT1 mediates DNA demethylation at a small set of loci targeted by the 5-methylcytosine DNA glycosylase ROS1, the involvement of BRAT1 in anti-silencing is largely independent of DNA demethylation. We also demonstrate that the bromodomain of BRAT1 binds to acetylated histone, which may facilitate the prevention of transcriptional silencing. Thus, BRAT1 represents a potential link between histone acetylation and transcriptional anti-silencing at methylated genomic regions, which may be conserved in eukaryotes. Transposons and repetitive sequences are typically subject to transcription silencing. Here, Zhang et al. find that the bromodomain-containing protein BRAT1 forms a complex with BRP1, recognizes histone acetylation and acts to prevent transcriptional silencing in Arabidopsis.
Collapse
Affiliation(s)
- Cui-Jun Zhang
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xiao-Mei Hou
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Lian-Mei Tan
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Chang-Rong Shao
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yong-Qiang Li
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| |
Collapse
|
37
|
Ortiz-Ramírez C, Hernandez-Coronado M, Thamm A, Catarino B, Wang M, Dolan L, Feijó JA, Becker JD. A Transcriptome Atlas of Physcomitrella patens Provides Insights into the Evolution and Development of Land Plants. MOLECULAR PLANT 2016; 9:205-220. [PMID: 26687813 DOI: 10.1016/j.molp.2015.12.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/28/2015] [Accepted: 12/01/2015] [Indexed: 05/08/2023]
Abstract
Identifying the genetic mechanisms that underpin the evolution of new organ and tissue systems is an aim of evolutionary developmental biology. Comparative functional genetic studies between angiosperms and bryophytes can define those genetic changes that were responsible for developmental innovations. Here, we report the generation of a transcriptome atlas covering most phases in the life cycle of the model bryophyte Physcomitrella patens, including detailed sporophyte developmental progression. We identified a comprehensive set of sporophyte-specific transcription factors, and found that many of these genes have homologs in angiosperms that function in developmental processes such as flowering and shoot branching. Deletion of the PpTCP5 transcription factor results in development of supernumerary sporangia attached to a single seta, suggesting that it negatively regulates branching in the moss sporophyte. Given that TCP genes repress branching in angiosperms, we suggest that this activity is ancient. Finally, comparison of P. patens and Arabidopsis thaliana transcriptomes led us to the identification of a conserved core of transcription factors expressed in tip-growing cells. We identified modifications in the expression patterns of these genes that could account for developmental differences between P. patens tip-growing cells and A. thaliana pollen tubes and root hairs.
Collapse
Affiliation(s)
- Carlos Ortiz-Ramírez
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | - Anna Thamm
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Bruno Catarino
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Mingyi Wang
- Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - José A Feijó
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
38
|
Zhou W, Zhu Y, Dong A, Shen WH. Histone H2A/H2B chaperones: from molecules to chromatin-based functions in plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:78-95. [PMID: 25781491 DOI: 10.1111/tpj.12830] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 05/06/2023]
Abstract
Nucleosomal core histones (H2A, H2B, H3 and H4) must be assembled, replaced or exchanged to preserve or modify chromatin organization and function according to cellular needs. Histone chaperones escort histones, and play key functions during nucleosome assembly/disassembly and in nucleosome structure configuration. Because of their location at the periphery of nucleosome, histone H2A-H2B dimers are remarkably dynamic. Here we focus on plant histone H2A/H2B chaperones, particularly members of the NUCLEOSOME ASSEMBLY PROTEIN-1 (NAP1) and FACILITATES CHROMATIN TRANSCRIPTION (FACT) families, discussing their molecular features, properties, regulation and function. Covalent histone modifications (e.g. ubiquitination, phosphorylation, methylation, acetylation) and H2A variants (H2A.Z, H2A.X and H2A.W) are also discussed in view of their crucial importance in modulating nucleosome organization and function. We further discuss roles of NAP1 and FACT in chromatin-based processes, such as transcription, DNA replication and repair. Specific functions of NAP1 and FACT are evident when their roles are considered with respect to regulation of plant growth and development and in plant responses to environmental stresses. Future major challenges remain in order to define in more detail the overlapping and specific roles of various members of the NAP1 family as well as differences and similarities between NAP1 and FACT family members, and to identify and characterize their partners as well as new families of chaperones to understand histone variant incorporation and chromatin target specificity.
Collapse
Affiliation(s)
- Wangbin Zhou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
39
|
Li Y, Duan CG, Zhu X, Qian W, Zhu JK. A DNA ligase required for active DNA demethylation and genomic imprinting in Arabidopsis. Cell Res 2015; 25:757-60. [PMID: 25906993 DOI: 10.1038/cr.2015.45] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yan Li
- 1] Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China [2] State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Science, Peking University, Beijing 100871, China
| | - Cheng-Guo Duan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Xiaohong Zhu
- 1] Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China [2] Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Science, Peking University, Beijing 100871, China
| | - Jian-Kang Zhu
- 1] Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China [2] Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
40
|
Li Y, Córdoba-Cañero D, Qian W, Zhu X, Tang K, Zhang H, Ariza RR, Roldán-Arjona T, Zhu JK. An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis [corrected]. PLoS Genet 2015; 11:e1004905. [PMID: 25569774 PMCID: PMC4287435 DOI: 10.1371/journal.pgen.1004905] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022] Open
Abstract
Active DNA demethylation in plants occurs through base excision repair, beginning with removal of methylated cytosine by the ROS1/DME subfamily of 5-methylcytosine DNA glycosylases. Active DNA demethylation in animals requires the DNA glycosylase TDG or MBD4, which functions after oxidation or deamination of 5-methylcytosine, respectively. However, little is known about the steps following DNA glycosylase action in the active DNA demethylation pathways in plants and animals. We show here that the Arabidopsis APE1L protein has apurinic/apyrimidinic endonuclease activities and functions downstream of ROS1 and DME. APE1L and ROS1 interact in vitro and co-localize in vivo. Whole genome bisulfite sequencing of ape1l mutant plants revealed widespread alterations in DNA methylation. We show that the ape1l/zdp double mutant displays embryonic lethality. Notably, the ape1l+/-zdp-/- mutant shows a maternal-effect lethality phenotype. APE1L and the DNA phosphatase ZDP are required for FWA and MEA gene imprinting in the endosperm and are important for seed development. Thus, APE1L is a new component of the active DNA demethylation pathway and, together with ZDP, regulates gene imprinting in Arabidopsis.
Collapse
Affiliation(s)
- Yan Li
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Science, Peking University, Beijing, China
| | - Dolores Córdoba-Cañero
- Department of Genetics, University of Córdoba/Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital, Córdoba, Spain
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Science, Peking University, Beijing, China
| | - Xiaohong Zhu
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Kai Tang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rafael R. Ariza
- Department of Genetics, University of Córdoba/Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital, Córdoba, Spain
| | - Teresa Roldán-Arjona
- Department of Genetics, University of Córdoba/Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital, Córdoba, Spain
- * E-mail: (TRA); (JKZ)
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (TRA); (JKZ)
| |
Collapse
|
41
|
Abstract
The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments.
Collapse
Affiliation(s)
- Craig S Pikaard
- Department of Biology, Department of Molecular and Cellular Biochemistry, and Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405
| | - Ortrun Mittelsten Scheid
- Gregor Mendel-Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| |
Collapse
|
42
|
Van Lijsebettens M, Grasser KD. Transcript elongation factors: shaping transcriptomes after transcript initiation. TRENDS IN PLANT SCIENCE 2014; 19:717-26. [PMID: 25131948 DOI: 10.1016/j.tplants.2014.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 05/06/2023]
Abstract
Elongation is a dynamic and highly regulated step of eukaryotic gene transcription. A variety of transcript elongation factors (TEFs), including modulators of RNA polymerase II (RNAPII) activity, histone chaperones, and histone modifiers, have been characterized from plants. These factors control the efficiency of transcript elongation of subsets of genes in the chromatin context and thus contribute to tuning gene expression programs. We review here how genetic and biochemical analyses, primarily in Arabidopsis thaliana, have advanced our understanding of how TEFs adjust plant gene transcription. These studies have revealed that TEFs regulate plant growth and development by modulating diverse processes including hormone signaling, circadian clock, pathogen defense, responses to light, and developmental transitions.
Collapse
Affiliation(s)
- Mieke Van Lijsebettens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium.
| | - Klaus D Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg (BZR), University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
43
|
Xia C, Wang YJ, Liang Y, Niu QK, Tan XY, Chu LC, Chen LQ, Zhang XQ, Ye D. The ARID-HMG DNA-binding protein AtHMGB15 is required for pollen tube growth in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:741-56. [PMID: 24923357 DOI: 10.1111/tpj.12582] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/25/2014] [Accepted: 05/28/2014] [Indexed: 05/22/2023]
Abstract
In flowering plants, male gametes (sperm cells) develop within male gametophytes (pollen grains) and are delivered to female gametes for double fertilization by pollen tubes. Therefore, pollen tube growth is crucial for reproduction. The mechanisms that control pollen tube growth remain poorly understood. In this study, we demonstrated that the ARID-HMG DNA-binding protein AtHMGB15 plays an important role in pollen tube growth. This protein is preferentially expressed in pollen grains and pollen tubes and is localized in the vegetative nuclei of the tricellular pollen grains and pollen tubes. Knocking down AtHMGB15 expression via a Ds insertion caused retarded pollen tube growth, leading to a significant reduction in the seed set. The athmgb15-1 mutation affected the expression of 1686 genes in mature pollen, including those involved in cell wall formation and modification, cell signaling and cellular transport during pollen tube growth. In addition, it was observed that AtHMGB15 binds to DNA in vitro and interacts with the transcription factors AGL66 and AGL104, which are required for pollen maturation and pollen tube growth. These results suggest that AtHMGB15 functions in pollen tube growth through the regulation of gene expression.
Collapse
Affiliation(s)
- Chuan Xia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kawashima T, Berger F. Epigenetic reprogramming in plant sexual reproduction. Nat Rev Genet 2014; 15:613-24. [DOI: 10.1038/nrg3685] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Zhao Y, Xie S, Li X, Wang C, Chen Z, Lai J, Gong Z. REPRESSOR OF SILENCING5 Encodes a Member of the Small Heat Shock Protein Family and Is Required for DNA Demethylation in Arabidopsis. THE PLANT CELL 2014; 26:2660-2675. [PMID: 24920332 PMCID: PMC4114958 DOI: 10.1105/tpc.114.126730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In Arabidopsis thaliana, active DNA demethylation is initiated by the DNA glycosylase REPRESSOR OF SILENCING1 (ROS1) and its paralogs DEMETER, DEMETER-LIKE2 (DML2), and DML3. How these demethylation enzymes are regulated, however, is poorly understood. Here, using a transgenic Arabidopsis line harboring the stress-inducible RESPONSIVE TO DEHYDRATION29A (RD29A) promoter-LUCIFERASE (LUC) reporter gene and the cauliflower mosaic virus 35S promoter (35S)-NEOMYCIN PHOSPHOTRANSFERASE II (NPTII) antibiotic resistance marker gene, we characterize a ROS locus, ROS5, that encodes a protein in the small heat shock protein family. ROS5 mutations lead to the silencing of the 35S-NPTII transgene due to DNA hypermethylation but do not affect the expression of the RD29A-LUC transgene. ROS5 physically interacts with the histone acetyltransferase ROS4/INCREASED DNA METHYLATION1 (IDM1) and is required to prevent the DNA hypermethylation of some genes that are also regulated by ROS1 and IDM1. We propose that ROS5 regulates DNA demethylation by interacting with IDM1, thereby creating a chromatin environment that facilitates the binding of ROS1 to erase DNA methylation.
Collapse
Affiliation(s)
- Yusheng Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaojun Xie
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaojie Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunlei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China National Center for Plant Gene Research, Beijing 100193, China
| |
Collapse
|
46
|
Borges F, Martienssen RA. Establishing epigenetic variation during genome reprogramming. RNA Biol 2014; 10:490-4. [PMID: 23774895 DOI: 10.4161/rna.24085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transgenerational reprogramming of DNA methylation is important for transposon silencing and epigenetic inheritance. A stochastic regulation of methylation states in the germline may lead to epigenetic variation and the formation of epialleles that contribute to phenotypic variation. In Arabidopsis thaliana inbred lines, the frequency of single base variation of DNA methylation is much higher than genetic mutation and, interestingly, variable epialleles are pre-methylated in the male germline. However, these same alleles are targeted for demethylation in the pollen vegetative nucleus, by a mechanism that seems to contribute to the accumulation of small RNAs that reinforce transcriptional gene silencing in the gametes. These observations are paving the way toward understanding the extent of epigenetic reprogramming in higher plants, and the mechanisms regulating the stability of acquired epigenetic states across generations.
Collapse
Affiliation(s)
- Filipe Borges
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | | |
Collapse
|
47
|
Ohnishi T, Sekine D, Kinoshita T. Genomic Imprinting in Plants. EPIGENETIC SHAPING OF SOCIOSEXUAL INTERACTIONS - FROM PLANTS TO HUMANS 2014; 86:1-25. [DOI: 10.1016/b978-0-12-800222-3.00001-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Zhang H, Wang B, Duan CG, Zhu JK. Chemical probes in plant epigenetics studies. PLANT SIGNALING & BEHAVIOR 2013; 8:25364. [PMID: 23838953 PMCID: PMC4002629 DOI: 10.4161/psb.25364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 06/01/2023]
Abstract
Transcription potential is determined by the accessibility of DNA sequences within the context of chromatin, which is coordinately controlled by various epigenetic modifications. Chemical inhibition of epigenetic regulators provides a quick and effective approach to investigate the roles of epigenetic modifications in controlling many biological processes, especially for species in which genetic information is limited. This mini-review provides a brief overview of epigenetic regulators in the model organism Arabidopsis thaliana and summarizes compounds that have been applied in plant epigenetics studies, with highlights in the applications of these chemical probes in mechanistic and functional investigations.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of Horticulture and Landscape Architecture; Purdue University; West Lafayette, IN USA
| | - Bangshing Wang
- Department of Horticulture and Landscape Architecture; Purdue University; West Lafayette, IN USA
| | - Cheng-Guo Duan
- Department of Horticulture and Landscape Architecture; Purdue University; West Lafayette, IN USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture; Purdue University; West Lafayette, IN USA
- Shanghai Center for Plant Stress Biology; Shanghai Institutes of Biological Sciences; Chinese Academy of Sciences; Shanghai, PR China
| |
Collapse
|
49
|
Nakamura M, Buzas DM, Kato A, Fujita M, Kurata N, Kinoshita T. The role of Arabidopsis thaliana NAR1, a cytosolic iron-sulfur cluster assembly component, in gametophytic gene expression and oxidative stress responses in vegetative tissue. THE NEW PHYTOLOGIST 2013; 199:925-935. [PMID: 23734982 DOI: 10.1111/nph.12350] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
Iron-sulfur proteins have iron-sulfur clusters as a prosthetic group and are responsible for various cellular processes, including general transcriptional regulation, photosynthesis and respiration. The cytosolic iron-sulfur assembly (CIA) pathway of yeast has been shown to be responsible for regulation of iron-sulfur cluster assembly in both the cytosol and the nucleus. However, little is known about the roles of this pathway in multicellular organisms. In a forward genetic screen, we identified an Arabidopsis thaliana mutant with impaired expression of the endosperm-specific gene Flowering Wageningen (FWA). To characterize this mutant, we carried out detailed phenotypic and genetic analyses during reproductive and vegetative development. The mutation affects NAR1, which encodes a homolog of a yeast CIA pathway component. Comparison of embryo development in nar1-3 and other A. thaliana mutants affected in the CIA pathway showed that the embryos aborted at a similar stage, suggesting that this pathway potentially functions in early seed development. Transcriptome analysis of homozygous viable nar1-4 seedlings showed transcriptional repression of a subset of genes involved in 'iron ion transport' and 'response to nitrate'. nar1-4 also exhibited resistance to the herbicide paraquat. Our results indicate that A. thaliana NAR1 has various functions including transcriptional regulation in gametophytes and abiotic stress responses in vegetative tissues.
Collapse
Affiliation(s)
- Miyuki Nakamura
- Plant Reproductive Genetics Group, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Diana Mihaela Buzas
- Plant Reproductive Genetics Group, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Akira Kato
- Department of Biology, Faculty of Science, Niigata University, Ikarashi, Niigata, 950-2181, Japan
| | - Masahiro Fujita
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Nori Kurata
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Tetsu Kinoshita
- Plant Reproductive Genetics Group, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
50
|
Abstract
Imprinted gene expression--the biased expression of alleles dependent on their parent of origin--is an important type of epigenetic gene regulation in flowering plants and mammals. In plants, genes are imprinted primarily in the endosperm, the triploid placenta-like tissue that surrounds and nourishes the embryo during its development. Differential allelic expression is correlated with active DNA demethylation by DNA glycosylases and repressive targeting by the Polycomb group proteins. Imprinted gene expression is one consequence of a large-scale remodeling to the epigenome, primarily directed at transposable elements, that occurs in gametes and seeds. This remodeling could be important for maintaining the epigenome in the embryo as well as for establishing gene imprinting.
Collapse
Affiliation(s)
- Mary Gehring
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142;
| |
Collapse
|