1
|
Shi J, Jin Y, Lin S, Li X, Zhang D, Wu J, Qi Y, Li Y. Mitochondrial non-energetic function and embryonic cardiac development. Front Cell Dev Biol 2024; 12:1475603. [PMID: 39435335 PMCID: PMC11491369 DOI: 10.3389/fcell.2024.1475603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The initial contraction of the heart during the embryonic stage necessitates a substantial energy supply, predominantly derived from mitochondrial function. However, during embryonic heart development, mitochondria influence beyond energy supplementation. Increasing evidence suggests that mitochondrial permeability transition pore opening and closing, mitochondrial fusion and fission, mitophagy, reactive oxygen species production, apoptosis regulation, Ca2+ homeostasis, and cellular redox state also play critical roles in early cardiac development. Therefore, this review aims to describe the essential roles of mitochondrial non-energetic function embryonic cardiac development.
Collapse
Affiliation(s)
- Jingxian Shi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuxi Jin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Jinlin Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Huang Y, Zhou B. Mitochondrial Dysfunction in Cardiac Diseases and Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11051500. [PMID: 37239170 DOI: 10.3390/biomedicines11051500] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria are the main site of intracellular synthesis of ATP, which provides energy for various physiological activities of the cell. Cardiomyocytes have a high density of mitochondria and mitochondrial damage is present in a variety of cardiovascular diseases. In this paper, we describe mitochondrial damage in mitochondrial cardiomyopathy, congenital heart disease, coronary heart disease, myocardial ischemia-reperfusion injury, heart failure, and drug-induced cardiotoxicity, in the context of the key roles of mitochondria in cardiac development and homeostasis. Finally, we discuss the main current therapeutic strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction, including pharmacological strategies, gene therapy, mitochondrial replacement therapy, and mitochondrial transplantation. It is hoped that this will provide new ideas for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, 167 North Lishi Road, Xicheng District, Beijing 100037, China
| |
Collapse
|
3
|
Uscategui Calderon M, Gonzalez BA, Yutzey KE. Cardiomyocyte-fibroblast crosstalk in the postnatal heart. Front Cell Dev Biol 2023; 11:1163331. [PMID: 37077417 PMCID: PMC10106698 DOI: 10.3389/fcell.2023.1163331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
During the postnatal period in mammals, the heart undergoes significant remodeling in response to increased circulatory demands. In the days after birth, cardiac cells, including cardiomyocytes and fibroblasts, progressively lose embryonic characteristics concomitant with the loss of the heart’s ability to regenerate. Moreover, postnatal cardiomyocytes undergo binucleation and cell cycle arrest with induction of hypertrophic growth, while cardiac fibroblasts proliferate and produce extracellular matrix (ECM) that transitions from components that support cellular maturation to production of the mature fibrous skeleton of the heart. Recent studies have implicated interactions of cardiac fibroblasts and cardiomyocytes within the maturing ECM environment to promote heart maturation in the postnatal period. Here, we review the relationships of different cardiac cell types and the ECM as the heart undergoes both structural and functional changes during development. Recent advances in the field, particularly in several recently published transcriptomic datasets, have highlighted specific signaling mechanisms that underlie cellular maturation and demonstrated the biomechanical interdependence of cardiac fibroblast and cardiomyocyte maturation. There is increasing evidence that postnatal heart development in mammals is dependent on particular ECM components and that resulting changes in biomechanics influence cell maturation. These advances, in definition of cardiac fibroblast heterogeneity and function in relation to cardiomyocyte maturation and the extracellular environment provide, support for complex cell crosstalk in the postnatal heart with implications for heart regeneration and disease mechanisms.
Collapse
Affiliation(s)
- Maria Uscategui Calderon
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brittany A. Gonzalez
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Katherine E. Yutzey,
| |
Collapse
|
4
|
Di Sante M, Antonucci S, Pontarollo L, Cappellaro I, Segat F, Deshwal S, Greotti E, Grilo LF, Menabò R, Di Lisa F, Kaludercic N. Monoamine oxidase A-dependent ROS formation modulates human cardiomyocyte differentiation through AKT and WNT activation. Basic Res Cardiol 2023; 118:4. [PMID: 36670288 PMCID: PMC9859871 DOI: 10.1007/s00395-023-00977-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/21/2023]
Abstract
During embryonic development, cardiomyocytes undergo differentiation and maturation, processes that are tightly regulated by tissue-specific signaling cascades. Although redox signaling pathways involved in cardiomyogenesis are established, the exact sources responsible for reactive oxygen species (ROS) formation remain elusive. The present study investigates whether ROS produced by the mitochondrial flavoenzyme monoamine oxidase A (MAO-A) play a role in cardiomyocyte differentiation from human induced pluripotent stem cells (hiPSCs). Wild type (WT) and MAO-A knock out (KO) hiPSCs were generated by CRISPR/Cas9 genome editing and subjected to cardiomyocyte differentiation. Mitochondrial ROS levels were lower in MAO-A KO compared to the WT cells throughout the differentiation process. MAO-A KO hiPSC-derived cardiomyocytes (hiPSC-CMs) displayed sarcomere disarray, reduced α- to β-myosin heavy chain ratio, GATA4 upregulation and lower macroautophagy levels. Functionally, genetic ablation of MAO-A negatively affected intracellular Ca2+ homeostasis in hiPSC-CMs. Mechanistically, MAO-A generated ROS contributed to the activation of AKT signaling that was considerably attenuated in KO cells. In addition, MAO-A ablation caused a reduction in WNT pathway gene expression consistent with its reported stimulation by ROS. As a result of WNT downregulation, expression of MESP1 and NKX2.5 was significantly decreased in MAO-A KO cells. Finally, MAO-A re-expression during differentiation rescued expression levels of cardiac transcription factors, contractile structure, and intracellular Ca2+ homeostasis. Taken together, these results suggest that MAO-A mediated ROS generation is necessary for the activation of AKT and WNT signaling pathways during cardiac lineage commitment and for the differentiation of fully functional human cardiomyocytes.
Collapse
Affiliation(s)
- Moises Di Sante
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Salvatore Antonucci
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Laura Pontarollo
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Ilaria Cappellaro
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Francesca Segat
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Elisa Greotti
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Luis F Grilo
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Roberta Menabò
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy.
| | - Nina Kaludercic
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127, Padua, Italy.
| |
Collapse
|
5
|
Choe MS, Yeo HC, Youm JB, Choi SH, Choi WY, Kim SJ, Oh ST, Han HJ, Baek KM, Kim JS, Lim KS, Chang W, Lee MY. Cyclosporin A Enhances Cardiac Differentiation by Inhibiting Wnt/β-Catenin Signaling in Human Embryonic Stem Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Cai J, Yang J, Liu Q, Gong Y, Zhang Y, Zhang Z. Selenium deficiency inhibits myocardial development and differentiation by targeting the mir-215-5p/CTCF axis in chicken. Metallomics 2019; 11:415-428. [DOI: 10.1039/c8mt00319j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selenium (Se) is imperative for normal myocardial differentiation and development, and these basic cellular functions can be regulated by miRNA during cardiogenesis.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Jie Yang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Qi Liu
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Yafan Gong
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Yuan Zhang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Ziwei Zhang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment
| |
Collapse
|
7
|
Wang K, Xu Y, Sun Q, Long J, Liu J, Ding J. Mitochondria regulate cardiac contraction through ATP-dependent and independent mechanisms. Free Radic Res 2018; 52:1256-1265. [PMID: 29544373 DOI: 10.1080/10715762.2018.1453137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The multipurpose organelle mitochondria play an essential role(s) in controlling cardiac muscle contraction. Mitochondria, not only function as the powerhouses and the energy source of myocytes but also modulate intracellular Ca2+ homeostasis, the production of intermediary metabolites/reactive oxygen species (ROS), and other cellular processes. Those molecular events can substantially influence myocardial contraction. Mitochondrial dysfunction is usually associated with cardiac remodelling, and is the causal factor of heart contraction defects in many cases. The manipulation of mitochondria or mitochondria-relevant pathways appears to be a promising therapeutic approach to treat the diseases.
Collapse
Affiliation(s)
- Kexin Wang
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Yang Xu
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Qiong Sun
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Jiangang Long
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Jiankang Liu
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Jian Ding
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
8
|
Wei H, Cong X. The effect of reactive oxygen species on cardiomyocyte differentiation of pluripotent stem cells. Free Radic Res 2018; 52:150-158. [PMID: 29258365 DOI: 10.1080/10715762.2017.1420184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The coordination of metabolic shift with genetic circuits is critical to cell specification, but the metabolic mechanisms that drive cardiac development are largely unknown. Reactive oxygen species (ROS) are not only the by-product of mitochondrial metabolism, but play a critical role in signalling cascade of cardiac development as a second messenger. Various levels of ROS appear differential and even oppose effect on selfrenewal and cardiac differentiation of pluripotent stem cells (PSCs) at each stage of differentiation. The intracellular ROS and redox balance are meticulous regulated by several systems of ROS generation and scavenging, among which mitochondria and the NADPH oxidase (NOX) are major sources of intracellular ROS involved in cardiomyocyte differentiation. Some critical signalling modulators are activated or inactivated by oxidation, suggesting ROS can be involved in regulation of cell fate through these downstream targets. In this review, the literatures about major sources of ROS, the effect of ROS level on cardiac differentiation of PSCs, as well as the underlying mechanism of ROS in the control of cardiac fate of PSC are summarised and discussed.
Collapse
Affiliation(s)
- Hua Wei
- a Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University , Charleston , SC , USA
| | - Xiangfeng Cong
- b Centre of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| |
Collapse
|
9
|
Jonas EA, Porter GA, Beutner G, Mnatsakanyan N, Alavian KN. Cell death disguised: The mitochondrial permeability transition pore as the c-subunit of the F(1)F(O) ATP synthase. Pharmacol Res 2015; 99:382-92. [PMID: 25956324 PMCID: PMC4567435 DOI: 10.1016/j.phrs.2015.04.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 12/16/2022]
Abstract
Ion transport across the mitochondrial inner and outer membranes is central to mitochondrial function, including regulation of oxidative phosphorylation and cell death. Although essential for ATP production by mitochondria, recent findings have confirmed that the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane and cell death. This review will discuss recent advances in understanding the molecular components of mPTP, its regulatory mechanisms and how these contribute directly to its physiological as well as pathological roles.
Collapse
Affiliation(s)
- Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA.
| | - George A Porter
- Department of Pediatrics (Cardiology), University of Rochester Medical Center, Rochester, NY, USA
| | - Gisela Beutner
- Department of Pediatrics (Cardiology), University of Rochester Medical Center, Rochester, NY, USA
| | - Nelli Mnatsakanyan
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| |
Collapse
|
10
|
Genome-wide analysis of functional and evolutionary features of tele-enhancers. G3-GENES GENOMES GENETICS 2014; 4:579-93. [PMID: 24496725 PMCID: PMC4059231 DOI: 10.1534/g3.114.010447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated sequence features of enhancers separated from their target gene by at least one intermediate gene/exon (named tele-enhancers in this study) and enhancers residing inside their target gene locus. In this study, we used whole genome enhancer maps and gene expression profiles to establish a large panel of tele-enhancers. By contrasting tele-enhancers to proximal enhancers targeting heart genes, we observed that heart tele-enhancers use unique regulatory mechanisms based on the cardiac transcription factors SRF, TEAD, and NKX-2.5, whereas proximal heart enhancers rely on GATA4 instead. A functional analysis showed that tele-enhancers preferentially regulate house-keeping genes and genes with a metabolic role during heart development. In addition, tele-enhancers are significantly more conserved than their proximal counterparts. Similar trends have been observed for non-heart tissues and cell types, suggesting that our findings represent general characteristics of tele-enhancers.
Collapse
|
11
|
Cho SW, Park JS, Heo HJ, Park SW, Song S, Kim I, Han YM, Yamashita JK, Youm JB, Han J, Koh GY. Dual modulation of the mitochondrial permeability transition pore and redox signaling synergistically promotes cardiomyocyte differentiation from pluripotent stem cells. J Am Heart Assoc 2014; 3:e000693. [PMID: 24627421 PMCID: PMC4187507 DOI: 10.1161/jaha.113.000693] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Cardiomyocytes that differentiate from pluripotent stem cells (PSCs) provide a crucial cellular resource for cardiac regeneration. The mechanisms of mitochondrial metabolic and redox regulation for efficient cardiomyocyte differentiation are, however, still poorly understood. Here, we show that inhibition of the mitochondrial permeability transition pore (mPTP) by Cyclosporin A (CsA) promotes cardiomyocyte differentiation from PSCs. Methods and Results We induced cardiomyocyte differentiation from mouse and human PSCs and examined the effect of CsA on the differentiation process. The cardiomyogenic effect of CsA mainly resulted from mPTP inhibition rather than from calcineurin inhibition. The mPTP inhibitor NIM811, which does not have an inhibitory effect on calcineurin, promoted cardiomyocyte differentiation as much as CsA did, but calcineurin inhibitor FK506 only slightly increased cardiomyocyte differentiation. CsA‐treated cells showed an increase in mitochondrial calcium, mitochondrial membrane potential, oxygen consumption rate, ATP level, and expression of genes related to mitochondrial function. Furthermore, inhibition of mitochondrial oxidative metabolism reduced the cardiomyogenic effect of CsA while antioxidant treatment augmented the cardiomyogenic effect of CsA. Conclusions Our data show that mPTP inhibition by CsA alters mitochondrial oxidative metabolism and redox signaling, which leads to differentiation of functional cardiomyocytes from PSCs.
Collapse
Affiliation(s)
- Sung Woo Cho
- Laboratory of Vascular Biology and Stem Cell, Korea Advanced Institute of Science and Technology
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
He Q, Han X. Cardiolipin remodeling in diabetic heart. Chem Phys Lipids 2013; 179:75-81. [PMID: 24189589 DOI: 10.1016/j.chemphyslip.2013.10.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/10/2013] [Accepted: 10/20/2013] [Indexed: 11/19/2022]
Abstract
Cardiolipin, a signature phospholipid of mitochondria, is predominantly present in the mitochondrial inner membrane and plays an important role in keeping optimal mitochondrial function. In addition to the cardiolipin content, the composition of four fatty acid chain is thought determine cardiolipin biological function. These acyl chains of cardiolipin are dynamically remodeled via tafazzin, monolysocardiolipin acyltransferase, and acyl-CoA lysocardiolipin acyltransferase especially in the heart under pathological conditions. The major species of cardiolipin in the normal heart, tetralinoleoyl cardiolipin, is dramatically decreased in the diabetic heart, but other species, typically those containing long fatty acyl chains, are increased. This remodeling of cardiolipin has detrimental effects on mitochondrial function and thereafter cardiac function. Approaches for manipulating cardiolipin acyl chains have been examined including via molecular biology and through supplementation of linoleic acid. The efficiency of cardiolipin remodeling and functional improvement is still under investigation.
Collapse
Affiliation(s)
- Quan He
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Xianlin Han
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA.
| |
Collapse
|
13
|
Murray TVA, Smyrnias I, Shah AM, Brewer AC. NADPH oxidase 4 regulates cardiomyocyte differentiation via redox activation of c-Jun protein and the cis-regulation of GATA-4 gene transcription. J Biol Chem 2013; 288:15745-59. [PMID: 23589292 DOI: 10.1074/jbc.m112.439844] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH oxidase 4 (Nox4) generates reactive oxygen species (ROS) that can modulate cellular phenotype and function in part through the redox modulation of the activity of transcription factors. We demonstrate here the potential of Nox4 to drive cardiomyocyte differentiation in pluripotent embryonal carcinoma cells, and we show that this involves the redox activation of c-Jun. This in turn acts to up-regulate GATA-4 expression, one of the earliest markers of cardiotypic differentiation, through a defined and highly conserved cis-acting motif within the GATA-4 promoter. These data therefore suggest a mechanism whereby ROS act in pluripotential cells in vivo to regulate the initial transcription of critical tissue-restricted determinant(s) of the cardiomyocyte phenotype, including GATA-4. The ROS-dependent activation, mediated by Nox4, of widely expressed redox-regulated transcription factors, such as c-Jun, is fundamental to this process.
Collapse
Affiliation(s)
- Thomas V A Murray
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, United Kingdom
| | | | | | | |
Collapse
|
14
|
Abstract
Since the Central dogma of Molecular Biology was proposed about 40 years ago; our understanding of the intricacies of gene regulation has undergone tectonic shifts almost every decade. It is now widely accepted that the complexity of an organism is not directed by the sheer number of genes it carries but how they are decoded by a myriad of regulatory modules. Over the years, it has emerged that the organizations chromatins and its remodeling; splicing and polyadenylation of pre-mRNAs, stability and localization of mRNAs and modulation of their expression by non-coding and miRNAs play pivotal roles in metazoan gene expression. Nevertheless, in spite of tremendous progress in our understanding of all these mechanisms of gene regulation, the way these events are coordinated leading towards a highly defined proteome of a given cell type remains enigmatic. In that context, the structures of many metazoan genes cannot fully explain their pattern of expression in different tissues, especially during embryonic development and progression of various diseases. Further, numerous studies done during the past quarter of a century suggested that the heritable states of transcriptional activation or repression of a gene can be influenced by the covalent modifications of constituent bases and associated histones; its chromosomal context and long-range interactions between various chromosomal elements (Holliday 1987; Turner 1998; Lyon 1993). However, molecular dissection of these phenomena is largely unknown and is an exciting topic of research under the sub-discipline epigenetics (Gasser et al. 1998).
Collapse
Affiliation(s)
- Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India,
| |
Collapse
|
15
|
Folmes CDL, Nelson TJ, Dzeja PP, Terzic A. Energy metabolism plasticity enables stemness programs. Ann N Y Acad Sci 2012; 1254:82-89. [PMID: 22548573 DOI: 10.1111/j.1749-6632.2012.06487.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Engineering pluripotency through nuclear reprogramming and directing stem cells into defined lineages underscores cell fate plasticity. Acquisition of and departure from stemness are governed by genetic and epigenetic controllers, with modulation of energy metabolism and associated signaling increasingly implicated in cell identity determination. Transition from oxidative metabolism, typical of somatic tissues, into glycolysis is a prerequisite to fuel-proficient reprogramming, directing a differentiated cytotype back to the pluripotent state. The glycolytic metabotype supports the anabolic and catabolic requirements of pluripotent cell homeostasis. Conversely, redirection of pluripotency into defined lineages requires mitochondrial biogenesis and maturation of efficient oxidative energy generation and distribution networks to match demands. The vital function of bioenergetics in regulating stemness and lineage specification implicates a broader role for metabolic reprogramming in cell fate decisions and determinations of tissue regenerative potential.
Collapse
Affiliation(s)
- Clifford D L Folmes
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
16
|
|