1
|
Castagnola V, Tomati V, Boselli L, Braccia C, Decherchi S, Pompa PP, Pedemonte N, Benfenati F, Armirotti A. Sources of biases in the in vitro testing of nanomaterials: the role of the biomolecular corona. NANOSCALE HORIZONS 2024; 9:799-816. [PMID: 38563642 DOI: 10.1039/d3nh00510k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The biological fate of nanomaterials (NMs) is driven by specific interactions through which biomolecules, naturally adhering onto their surface, engage with cell membrane receptors and intracellular organelles. The molecular composition of this layer, called the biomolecular corona (BMC), depends on both the physical-chemical features of the NMs and the biological media in which the NMs are dispersed and cells grow. In this work, we demonstrate that the widespread use of 10% fetal bovine serum in an in vitro assay cannot recapitulate the complexity of in vivo systemic administration, with NMs being transported by the blood. For this purpose, we undertook a comparative journey involving proteomics, lipidomics, high throughput multiparametric in vitro screening, and single molecular feature analysis to investigate the molecular details behind this in vivo/in vitro bias. Our work indirectly highlights the need to introduce novel, more physiological-like media closer in composition to human plasma to produce realistic in vitro screening data for NMs. We also aim to set the basis to reduce this in vitro-in vivo mismatch, which currently limits the formulation of NMs for clinical settings.
Collapse
Affiliation(s)
- Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Clarissa Braccia
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| | - Sergio Decherchi
- Data Science and Computation Facility, Istituto Italiano di Tecnologia, via Morego, 30, Genova, 16163, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
| |
Collapse
|
2
|
Phatak P, Burrows WM, Creed TM, Youssef M, Lee G, Donahue JM. MiR-214-3p targets Ras-related protein 14 (RAB14) to inhibit cellular migration and invasion in esophageal Cancer cells. BMC Cancer 2022; 22:1265. [PMID: 36471277 PMCID: PMC9721009 DOI: 10.1186/s12885-022-10304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/10/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND MicroRNA (miR)-214-3p is emerging as an important tumor suppressor in esophageal cancer. In this study, we examined the interaction between miR-214-3p and RAB14, a membrane trafficking protein shown to exert oncogenic functions in other malignancies, in esophageal cancer cells. METHODS Studies were performed in a human esophageal epithelial cell line and a panel of esophageal cancer cell lines, as well in human specimens. MiR-214-3p expression was measured by digital PCR. Biotinylated RNA pull-down and luciferase reporter assays assessed binding. The xCELLigence RTCA system measured cell migration and invasion in real time. A lentiviral expression vector was used to create an esophageal cancer cell line stably expressing miR-214-3p. RESULTS MiR-214-3p expression was decreased in esophageal cancer cell lines and human specimens compared to non-malignant controls. RAB14 mRNA stability and protein expression were decreased following miR-214-3p overexpression. Binding between miR-214-3p and RAB14 mRNA was observed. Either forced expression of miR-214-3p or RAB14 silencing led to a marked decrease in cellular migration and invasion. Esophageal cancer cells stably expressing miR-214-3p demonstrated decreased growth in a subcutaneous murine model. CONCLUSIONS These results further support the tumor-suppressive role of miR-214-3p in esophageal cancer cells by demonstrating its ability to regulate RAB14 expression.
Collapse
Affiliation(s)
- Pornima Phatak
- grid.280808.a0000 0004 0419 1326Birmingham Veterans Affairs Medical Center, Birmingham, AL USA ,grid.265892.20000000106344187Department of Surgery, University of Alabama at Birmingham, Birmingham, AL USA ,grid.280711.d0000 0004 0419 6661Baltimore Veterans Affairs Medical Center, Baltimore, MD USA
| | - Whitney M. Burrows
- grid.411024.20000 0001 2175 4264Department of Surgery, University of Maryland School of Medicine, Baltimore, MD USA
| | - Timothy Michael Creed
- grid.411024.20000 0001 2175 4264Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Mariam Youssef
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Goo Lee
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - James M. Donahue
- grid.280808.a0000 0004 0419 1326Birmingham Veterans Affairs Medical Center, Birmingham, AL USA ,grid.265892.20000000106344187Department of Surgery, University of Alabama at Birmingham, Birmingham, AL USA ,grid.280711.d0000 0004 0419 6661Baltimore Veterans Affairs Medical Center, Baltimore, MD USA
| |
Collapse
|
3
|
Cao ZQ, Wang Z, Leng P. Aberrant N-cadherin expression in cancer. Biomed Pharmacother 2019; 118:109320. [DOI: 10.1016/j.biopha.2019.109320] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
|
4
|
Qu L, Pan C, He SM, Lang B, Gao GD, Wang XL, Wang Y. The Ras Superfamily of Small GTPases in Non-neoplastic Cerebral Diseases. Front Mol Neurosci 2019; 12:121. [PMID: 31213978 PMCID: PMC6555388 DOI: 10.3389/fnmol.2019.00121] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases from the Ras superfamily play crucial roles in basic cellular processes during practically the entire process of neurodevelopment, including neurogenesis, differentiation, gene expression, membrane and protein traffic, vesicular trafficking, and synaptic plasticity. Small GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Different subfamilies of small GTPases have been linked to a number of non-neoplastic cerebral diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), intellectual disability, epilepsy, drug addiction, Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and a large number of idiopathic cerebral diseases. Here, we attempted to make a clearer illustration of the relationship between Ras superfamily GTPases and non-neoplastic cerebral diseases, as well as their roles in the neural system. In future studies, potential treatments for non-neoplastic cerebral diseases which are based on small GTPase related signaling pathways should be explored further. In this paper, we review all the available literature in support of this possibility.
Collapse
Affiliation(s)
- Liang Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Chao Pan
- Beijing Institute of Biotechnology, Beijing, China
| | - Shi-Ming He
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China.,Department of Neurosurgery, Xi'an International Medical Center, Xi'an, China
| | - Bing Lang
- The School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Zhang X, Huang TY, Yancey J, Luo H, Zhang YW. Role of Rab GTPases in Alzheimer's Disease. ACS Chem Neurosci 2019; 10:828-838. [PMID: 30261139 DOI: 10.1021/acschemneuro.8b00387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) comprises two major pathological hallmarks: extraneuronal deposition of β-amyloid (Aβ) peptides ("senile plaques") and intraneuronal aggregation of the microtubule-associated protein tau ("neurofibrillary tangles"). Aβ is derived from sequential cleavage of the β-amyloid precursor protein by β- and γ-secretases, while aggregated tau is hyperphosphorylated in AD. Mounting evidence suggests that dysregulated trafficking of these AD-related proteins contributes to AD pathogenesis. Rab proteins are small GTPases that function as master regulators of vesicular transport and membrane trafficking. Multiple Rab GTPases have been implicated in AD-related protein trafficking, and their expression has been observed to be altered in postmortem AD brain. Here we review current implicated roles of Rab GTPase dysregulation in AD pathogenesis. Further elucidation of the pathophysiological role of Rab GTPases will likely reveal novel targets for AD therapeutics.
Collapse
Affiliation(s)
- Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Timothy Y. Huang
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Joel Yancey
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Yun-wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
6
|
Abstract
The ubiquitous pannexin 1 (Panx1) ion- and metabolite-permeable channel mediates the release of ATP, a potent signalling molecule. In the present study, we provide striking evidence that ATP, in turn, stimulates internalization of Panx1 to intracellular membranes. These findings hold important implications for understanding the regulation of Panx1 when extracellular ATP is elevated. In the nervous system, this includes phenomena such as synaptic plasticity, pain, precursor cell development and stroke; outside of the nervous system, this includes things like skeletal and smooth muscle activity and inflammation. Within 15 min, ATP led to significant Panx1-EGFP internalization. In a series of experiments, we determined that hydrolysable ATP is the most potent stimulator of Panx1 internalization. We identified two possible mechanisms for Panx1 internalization, including activation of ionotropic purinergic (P2X) receptors and involvement of a putative ATP-sensitive residue in the first extracellular loop of Panx1 (Trp(74)). Internalization was cholesterol-dependent, but clathrin, caveolin and dynamin independent. Detailed analysis of Panx1 at specific endosome sub-compartments confirmed that Panx1 is expressed in endosome membranes of the classical degradation pathway under basal conditions and that elevation of ATP levels diverts a sub-population to recycling endosomes. This is the first report detailing endosome localization of Panx1 under basal conditions and the potential for ATP regulation of its surface expression. Given the ubiquitous expression profile of Panx1 and the importance of ATP signalling, these findings are of critical importance for understanding the role of Panx1 in health and disease.
Collapse
|