1
|
Abstract
The endoderm is the innermost germ layer that forms the linings of the respiratory and gastrointestinal tracts, and their associated organs, during embryonic development. Xenopus embryology experiments have provided fundamental insights into how the endoderm develops in vertebrates, including the critical role of TGFβ-signaling in endoderm induction,elucidating the gene regulatory networks controlling germ layer development and the key molecular mechanisms regulating endoderm patterning and morphogenesis. With new genetic, genomic, and imaging approaches, Xenopus is now routinely used to model human disease, discover mechanisms underlying endoderm organogenesis, and inform differentiation protocols for pluripotent stem cell differentiation and regenerative medicine applications. In this chapter, we review historical and current discoveries of endoderm development in Xenopus, then provide examples of modeling human disease and congenital defects of endoderm-derived organs using Xenopus.
Collapse
Affiliation(s)
- Nicole A Edwards
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Aaron M Zorn
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
2
|
Xu HB, Li YX, Li Y, Otecko NO, Zhang YP, Mao B, Wu DD. Origin of new genes after zygotic genome activation in vertebrate. J Mol Cell Biol 2019; 10:139-146. [PMID: 29281098 DOI: 10.1093/jmcb/mjx057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
New genes are drivers of evolutionary innovation and phenotypic evolution. Expression of new genes in early development raises the possibility that new genes could originate and be recruited for functions in embryonic development, but this remains undocumented. Here, based on temporal gene expression at different developmental stages in Xenopus tropicalis, we found that young protein-coding genes were significantly enriched for expression in developmental stages occurring after the midblastula transition (MBT), and displayed a decreasing trend in abundance in the subsequent stages after MBT. To complement the finding, we demonstrate essential functional attributes of a young orphan gene, named as Fog2, in morphological development. Our data indicate that new genes could originate after MBT and be recruited for functions in embryonic development, and thus provide insights for better understanding of the origin, evolution, and function of new genes.
Collapse
Affiliation(s)
- Hai-Bo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,College of Life Science, Anhui University, Hefei, China
| | - Yong-Xin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
3
|
Womble M, Amin NM, Nascone-Yoder N. The left-right asymmetry of liver lobation is generated by Pitx2c-mediated asymmetries in the hepatic diverticulum. Dev Biol 2018; 439:80-91. [PMID: 29709601 PMCID: PMC5988353 DOI: 10.1016/j.ydbio.2018.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/26/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022]
Abstract
Internal organs exhibit left-right asymmetric sizes, shapes and anatomical positions, but how these different lateralities develop is poorly understood. Here we use the experimentally tractable Xenopus model to uncover the morphogenetic events that drive the left-right asymmetrical lobation of the liver. On the right side of the early hepatic diverticulum, endoderm cells become columnar and apically constricted, forming an expanded epithelial surface and, ultimately, an enlarged right liver lobe. In contrast, the cells on the left side become rounder, and rearrange into a compact, stratified architecture that produces a smaller left lobe. Side-specific gain- and loss-of-function studies reveal that asymmetric expression of the left-right determinant Pitx2c elicits distinct epithelial morphogenesis events in the left side of the diverticulum. Surprisingly, the cellular events induced by Pitx2c during liver development are opposite those induced in other digestive organs, suggesting divergent cellular mechanisms underlie the formation of different lateralities.
Collapse
Affiliation(s)
- Mandy Womble
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA
| | - Nirav M Amin
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA.
| |
Collapse
|
4
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
5
|
Stevens ML, Chaturvedi P, Rankin SA, Macdonald M, Jagannathan S, Yukawa M, Barski A, Zorn AM. Genomic integration of Wnt/β-catenin and BMP/Smad1 signaling coordinates foregut and hindgut transcriptional programs. Development 2017; 144:1283-1295. [PMID: 28219948 DOI: 10.1242/dev.145789] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/03/2017] [Indexed: 12/16/2022]
Abstract
Digestive system development is orchestrated by combinatorial signaling interactions between endoderm and mesoderm, but how these signals are interpreted in the genome is poorly understood. Here we identified the transcriptomes of Xenopus foregut and hindgut progenitors, which are conserved with mammals. Using RNA-seq and ChIP-seq we show that BMP/Smad1 regulates dorsal-ventral gene expression in both the endoderm and mesoderm, whereas Wnt/β-catenin acts as a genome-wide toggle between foregut and hindgut programs. Unexpectedly, β-catenin and Smad1 binding were associated with both transcriptional activation and repression, with Wnt-repressed genes often lacking canonical Tcf DNA binding motifs, suggesting a novel mode of direct repression. Combinatorial Wnt and BMP signaling was mediated by Smad1 and β-catenin co-occupying hundreds of cis-regulatory DNA elements, and by a crosstalk whereby Wnt negatively regulates BMP ligand expression in the foregut. These results extend our understanding of gastrointestinal organogenesis and of how Wnt and BMP might coordinate genomic responses in other contexts.
Collapse
Affiliation(s)
- Mariana L Stevens
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Scott A Rankin
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Melissa Macdonald
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Sajjeev Jagannathan
- Division of Allergy & Immunology and Human Genetics, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Masashi Yukawa
- Division of Allergy & Immunology and Human Genetics, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Artem Barski
- Division of Allergy & Immunology and Human Genetics, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
6
|
Green YS, Kwon S, Mimoto MS, Xie Y, Christian JL. Tril targets Smad7 for degradation to allow hematopoietic specification in Xenopus embryos. Development 2016; 143:4016-4026. [PMID: 27633996 DOI: 10.1242/dev.141812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022]
Abstract
In Xenopus laevis, bone morphogenetic proteins (Bmps) induce expression of the transcription factor Gata2 during gastrulation, and Gata2 is required in both ectodermal and mesodermal cells to enable mesoderm to commit to a hematopoietic fate. Here, we identify tril as a Gata2 target gene that is required in both ectoderm and mesoderm for primitive hematopoiesis to occur. Tril is a transmembrane protein that functions as a co-receptor for Toll-like receptors to mediate innate immune responses in the adult brain, but developmental roles for this molecule have not been identified. We show that Tril function is required both upstream and downstream of Bmp receptor-mediated Smad1 phosphorylation for induction of Bmp target genes. Mechanistically, Tril triggers degradation of the Bmp inhibitor Smad7. Tril-dependent downregulation of Smad7 relieves repression of endogenous Bmp signaling during gastrulation and this enables mesodermal progenitors to commit to a blood fate. Thus, Tril is a novel component of a Bmp-Gata2 positive-feedback loop that plays an essential role in hematopoietic specification.
Collapse
Affiliation(s)
- Yangsook Song Green
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 84132, USA
| | - Sunjong Kwon
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, Portland, OR 97239-3098, USA
| | - Mizuho S Mimoto
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, Portland, OR 97239-3098, USA
| | - Yuanyuan Xie
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 84132, USA
| | - Jan L Christian
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
7
|
Zhang Z, Rankin SA, Zorn AM. Syndecan4 coordinates Wnt/JNK and BMP signaling to regulate foregut progenitor development. Dev Biol 2016; 416:187-199. [PMID: 27235146 PMCID: PMC5293220 DOI: 10.1016/j.ydbio.2016.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/21/2016] [Accepted: 05/21/2016] [Indexed: 01/17/2023]
Abstract
Temporally and spatially dynamic Wnt and BMP signals are essential to pattern foregut endoderm progenitors that give rise to the liver, pancreas and lungs, but how these two signaling pathways are coordinated in the extracellular space is unknown. Here we identify the transmembrane heparan sulphate proteoglycan Syndecan-4 (Sdc4), as a key regulator of both non-canonical Wnt and BMP signaling in the Xenopus foregut. Foregut-specific Sdc4 depletion results in a disrupted Fibronectin (Fn1) matrix, reduced cell adhesion, and failure to maintain foregut gene expression ultimately leading to foregut organ hypoplasia. Sdc4 is required to maintain robust Wnt/JNK and BMP/Smad1 signaling in the hhex+ foregut progenitors. Pathway analysis suggests that Sdc4 functionally interacts with Fzd7 to promote Wnt/JNK signaling, which maintains foregut identity and cell adhesion. In addition, the Sdc4 ectodomain is required to support Fn1 matrix assembly, which is essential for the robust BMP signaling that promotes foregut gene expression. This work sheds lights on how the extracellular matrix can coordinate different signaling pathways during organogenesis.
Collapse
Affiliation(s)
- Zheng Zhang
- Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Scott A Rankin
- Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
8
|
Womble M, Pickett M, Nascone-Yoder N. Frogs as integrative models for understanding digestive organ development and evolution. Semin Cell Dev Biol 2016; 51:92-105. [PMID: 26851628 PMCID: PMC4798877 DOI: 10.1016/j.semcdb.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
The digestive system comprises numerous cells, tissues and organs that are essential for the proper assimilation of nutrients and energy. Many aspects of digestive organ function are highly conserved among vertebrates, yet the final anatomical configuration of the gut varies widely between species, especially those with different diets. Improved understanding of the complex molecular and cellular events that orchestrate digestive organ development is pertinent to many areas of biology and medicine, including the regeneration or replacement of diseased organs, the etiology of digestive organ birth defects, and the evolution of specialized features of digestive anatomy. In this review, we highlight specific examples of how investigations using Xenopus laevis frog embryos have revealed insight into the molecular and cellular dynamics of digestive organ patterning and morphogenesis that would have been difficult to obtain in other animal models. Additionally, we discuss recent studies of gut development in non-model frog species with unique feeding strategies, such as Lepidobatrachus laevis and Eleutherodactylous coqui, which are beginning to provide glimpses of the evolutionary mechanisms that may generate morphological variation in the digestive tract. The unparalleled experimental versatility of frog embryos make them excellent, integrative models for studying digestive organ development across multiple disciplines.
Collapse
Affiliation(s)
- Mandy Womble
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Melissa Pickett
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States.
| |
Collapse
|
9
|
Tsai MS, Suksaweang S, Jiang TX, Wu P, Kao YH, Lee PH, Widelitz R, Chuong CM. Proper BMP Signaling Levels Are Essential for 3D Assembly of Hepatic Cords from Hepatoblasts and Mesenchymal Cells. Dig Dis Sci 2015; 60:3669-80. [PMID: 26173507 PMCID: PMC5572674 DOI: 10.1007/s10620-015-3798-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 07/02/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Because the molecular mechanisms of morphogenesis of the hepatic cord and sinus are unclear, we investigated the involvement of bone morphogenetic protein (BMP4) in hepatic sinusoid morphogenesis. METHODS We used embryonic chicken livers, which develop rapidly, as our model, and investigated expression of BMP-related genes. BMP4 activity was manipulated by overexpressing BMP4 and its antagonist, noggin. RESULTS During hepatic cord morphogenesis, BMP4 and its receptors are expressed in both peri-sinusoidal cells and hepatoblasts as the sinusoids form, whereas noggin is expressed transiently in peri-sinusoidal cells at early stages. Suppression of BMP activity with noggin overexpression disrupted normal hepatic sinusoid structure, leading to liver congestion, failure of fibronectin deposition, and markedly reduced numbers of peri-sinusoidal cells. However, overexpression of BMP did not change sinusoidal morphology but increased endothelial cell number. Noggin overexpression resulted in disrupted cord organization, and dilated sinusoidal space, eventually leading to increased apoptosis and failed hepatocyte differentiation. CONCLUSIONS Our results show that proper BMP signaling mediates peri-sinusoidal cell-hepatoblast interactions during development; this is essential for hepatic cord organization among hepatoblasts, endothelium, and presumptive hepatic stellate cells.
Collapse
Affiliation(s)
- Ming-Shian Tsai
- Department of Pathology, University of Southern California, HMR 315B, 2011 Zonal Ave., Los Angeles, CA, 90033, USA
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Sanong Suksaweang
- Department of Pathology, University of Southern California, HMR 315B, 2011 Zonal Ave., Los Angeles, CA, 90033, USA
- Department of Pathology and Laboratory Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Ting-Xin Jiang
- Department of Pathology, University of Southern California, HMR 315B, 2011 Zonal Ave., Los Angeles, CA, 90033, USA
| | - Ping Wu
- Department of Pathology, University of Southern California, HMR 315B, 2011 Zonal Ave., Los Angeles, CA, 90033, USA
| | - Ying-Hsien Kao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Po-Huang Lee
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Randall Widelitz
- Department of Pathology, University of Southern California, HMR 315B, 2011 Zonal Ave., Los Angeles, CA, 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, HMR 315B, 2011 Zonal Ave., Los Angeles, CA, 90033, USA.
| |
Collapse
|
10
|
Agricola ZN, Jagpal AK, Allbee AW, Prewitt AR, Shifley ET, Rankin SA, Zorn AM, Kenny AP. Identification of genes expressed in the migrating primitive myeloid lineage of Xenopus laevis. Dev Dyn 2015; 245:47-55. [PMID: 26264370 DOI: 10.1002/dvdy.24314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/23/2015] [Accepted: 07/13/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND During primitive hematopoiesis in Xenopus, cebpa and spib expressing myeloid cells emerge from the anterior ventral blood island. Primitive myeloid cells migrate throughout the embryo and are critical for immunity, healing, and development. Although definitive hematopoiesis has been studied extensively, molecular mechanisms leading to the migration of primitive myelocytes remain poorly understood. We hypothesized these cells have specific extracellular matrix modifying and cell motility gene expression. RESULTS In situ hybridization screens of transcripts expressed in Xenopus foregut mesendoderm at stage 23 identified seven genes with restricted expression in primitive myeloid cells: destrin; coronin actin binding protein, 1a; formin-like 1; ADAM metallopeptidase domain 28; cathepsin S; tissue inhibitor of metalloproteinase-1; and protein tyrosine phosphatase nonreceptor 6. A detailed in situ hybridization analysis revealed these genes are initially expressed in the aVBI but become dispersed throughout the embryo as the primitive myeloid cells become migratory, similar to known myeloid markers. Morpholino-mediated loss-of-function and mRNA-mediated gain-of-function studies revealed the identified genes are downstream of Spib.a and Cebpa, key transcriptional regulators of the myeloid lineage. CONCLUSIONS We have identified genes specifically expressed in migratory primitive myeloid progenitors, providing tools to study how different gene networks operate in these primitive myelocytes during development and immunity.
Collapse
Affiliation(s)
- Zachary N Agricola
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Neonatology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Amrita K Jagpal
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Neonatology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Andrew W Allbee
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Neonatology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Allison R Prewitt
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Neonatology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Emily T Shifley
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Scott A Rankin
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Aaron M Zorn
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Alan P Kenny
- Perinatal Institute, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Neonatology, Cincinnati Children's Hospital Research Foundation and Department of Pediatrics College of Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
11
|
Abstract
The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis.
Collapse
Affiliation(s)
- Miriam Gordillo
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Miyagi A, Negishi T, Yamamoto TS, Ueno N. G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus. Dev Biol 2015; 407:131-44. [PMID: 26244992 DOI: 10.1016/j.ydbio.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 06/18/2015] [Accepted: 08/01/2015] [Indexed: 12/11/2022]
Abstract
Patterning of the vertebrate anterior-posterior axis is regulated by the coordinated action of growth factors whose effects can be further modulated by upstream and downstream mediators and the cross-talk of different intracellular pathways. In particular, the inhibition of the Wnt/β-catenin signaling pathway by various factors is critically required for anterior specification. Here, we report that Flop1 and Flop2 (Flop1/2), G protein-coupled receptors related to Gpr4, contribute to the regulation of head formation by inhibiting Wnt/β-catenin signaling in Xenopus embryos. Using whole-mount in situ hybridization, we showed that flop1 and flop2 mRNAs were expressed in the neural ectoderm during early gastrulation. Both the overexpression and knockdown of Flop1/2 resulted in altered embryonic head phenotypes, while the overexpression of either Flop1/2 or the small GTPase RhoA in the absence of bone morphogenetic protein (BMP) signaling resulted in ectopic head induction. Examination of the Flops' function in Xenopus embryo animal cap cells showed that they inhibited Wnt/β-catenin signaling by promoting β-catenin degradation through both RhoA-dependent and -independent pathways in a cell-autonomous manner. These results suggest that Flop1 and Flop2 are essential regulators of Xenopus head formation that act as novel inhibitory components of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Asuka Miyagi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takefumi Negishi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takamasa S Yamamoto
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Naoto Ueno
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
13
|
The prodomain of BMP4 is necessary and sufficient to generate stable BMP4/7 heterodimers with enhanced bioactivity in vivo. Proc Natl Acad Sci U S A 2015; 112:E2307-16. [PMID: 25902523 DOI: 10.1073/pnas.1501449112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bone morphogenetic proteins 4 and 7 (BMP4 and BMP7) are morphogens that signal as either homodimers or heterodimers to regulate embryonic development and adult homeostasis. BMP4/7 heterodimers exhibit markedly higher signaling activity than either homodimer, but the mechanism underlying the enhanced activity is unknown. BMPs are synthesized as inactive precursors that dimerize and are then cleaved to generate both the bioactive ligand and prodomain fragments, which lack signaling activity. Our study reveals a previously unknown requirement for the BMP4 prodomain in promoting heterodimer activity. We show that BMP4 and BMP7 precursor proteins preferentially or exclusively form heterodimers when coexpressed in vivo. In addition, we show that the BMP4 prodomain is both necessary and sufficient for generation of stable heterodimeric ligands with enhanced activity and can enable homodimers to signal in a context in which they normally lack activity. Our results suggest that intrinsic properties of the BMP4 prodomain contribute to the relative bioactivities of homodimers versus heterodimers in vivo. These findings have clinical implications for the use of BMPs as regenerative agents for the treatment of bone injury and disease.
Collapse
|
14
|
Abstract
Diseases affecting endodermal organs like the pancreas, lung and gastrointestinal (GI) tract have a substantial impact on human welfare. Since many of these are congenital defects that arise as a result of defects during development broad efforts are focused on understanding the development of these organs so as to better identify risk factors, disease mechanisms and therapeutic targets. Studies implementing model systems, like the amphibian Xenopus, have contributed immensely to our understanding of signaling (e.g. Wnt, FGF, BMP, RA) pathways and gene regulation (e.g. hhex, ptf1a, ngn3) that underlie normal development as well as disease progression. Recent advances in genome engineering further enhance the capabilities of the Xenopus model system for pursuing biomedical research, and will undoubtedly result in a boom of new information underlying disease mechanisms ultimately leading to advancements in diagnosis and therapy.
Collapse
|
15
|
Tilak A, Nelsen SM, Kim HS, Donley N, McKnite A, Lee H, Christian JL. Simultaneous rather than ordered cleavage of two sites within the BMP4 prodomain leads to loss of ligand in mice. Development 2014; 141:3062-71. [PMID: 24993941 DOI: 10.1242/dev.110130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ProBMP4 is generated as a latent precursor that is sequentially cleaved at two sites within the prodomain to generate an active ligand. An initial cleavage occurs adjacent to the ligand domain, which generates a non-covalently associated prodomain/ligand complex that is subsequently dissociated by cleavage at an upstream site. An outstanding question is whether the two sites need to be cleaved sequentially and in the correct order to achieve proper control of BMP4 signaling during development. In the current studies, we demonstrate that mice carrying a knock-in point mutation that causes simultaneous rather than sequential cleavage of both prodomain sites show loss of BMP4 function and die during mid-embryogenesis. Levels of mature BMP4 are severely reduced in mutants, although levels of precursor and cleaved prodomain are unchanged compared with wild type. Our biochemical analysis supports a model in which the transient prodomain/ligand complex that forms during sequential cleavage plays an essential role in prodomain-mediated stabilization of the mature ligand until it can acquire protection from degradation by other means. By contrast, simultaneous cleavage causes premature release of the ligand from the prodomain, leading to destabilization of the ligand and loss of signaling in vivo.
Collapse
Affiliation(s)
- Anup Tilak
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, Portland, OR 97239-3098, USA
| | - Sylvia M Nelsen
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, Portland, OR 97239-3098, USA
| | - Hyung-Seok Kim
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 94132, USA
| | - Nathan Donley
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, Portland, OR 97239-3098, USA
| | - Autumn McKnite
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 94132, USA
| | - Hyunjung Lee
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, Portland, OR 97239-3098, USA
| | - Jan L Christian
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 94132, USA
| |
Collapse
|
16
|
Lawton BR, Sosa JA, Roman S, Krause DS. Effect of a Matrigel Sandwich on Endodermal Differentiation of Human Embryonic Stem Cells. Stem Cell Rev Rep 2013; 9:578-85. [DOI: 10.1007/s12015-013-9447-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
James-Zorn C, Ponferrada VG, Jarabek CJ, Burns KA, Segerdell EJ, Lee J, Snyder K, Bhattacharyya B, Karpinka JB, Fortriede J, Bowes JB, Zorn AM, Vize PD. Xenbase: expansion and updates of the Xenopus model organism database. Nucleic Acids Res 2012; 41:D865-70. [PMID: 23125366 PMCID: PMC3531164 DOI: 10.1093/nar/gks1025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Xenbase (http://www.xenbase.org) is a model organism database that provides genomic, molecular, cellular and developmental biology content to biomedical researchers working with the frog, Xenopus and Xenopus data to workers using other model organisms. As an amphibian Xenopus serves as a useful evolutionary bridge between invertebrates and more complex vertebrates such as birds and mammals. Xenbase content is collated from a variety of external sources using automated and semi-automated pipelines then processed via a combination of automated and manual annotation. A link-matching system allows for the wide variety of synonyms used to describe biological data on unique features, such as a gene or an anatomical entity, to be used by the database in an equivalent manner. Recent updates to the database include the Xenopus laevis genome, a new Xenopus tropicalis genome build, epigenomic data, collections of RNA and protein sequences associated with genes, more powerful gene expression searches, a community and curated wiki, an extensive set of manually annotated gene expression patterns and a new database module that contains data on over 700 antibodies that are useful for exploring Xenopus cell and developmental biology.
Collapse
Affiliation(s)
- Christina James-Zorn
- Division of Developmental Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, S3.620, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shifley ET, Kenny AP, Rankin SA, Zorn AM. Prolonged FGF signaling is necessary for lung and liver induction in Xenopus. BMC DEVELOPMENTAL BIOLOGY 2012; 12:27. [PMID: 22988910 PMCID: PMC3514138 DOI: 10.1186/1471-213x-12-27] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/10/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND FGF signaling plays numerous roles during organogenesis of the embryonic gut tube. Mouse explant studies suggest that different thresholds of FGF signaling from the cardiogenic mesoderm induce lung, liver, and pancreas lineages from the ventral foregut progenitor cells. The mechanisms that regulate FGF dose in vivo are unknown. Here we use Xenopus embryos to examine the hypothesis that a prolonged duration of FGF signaling from the mesoderm is required to induce foregut organs. RESULTS We show that both mesoderm and FGF signaling are required for liver and lung development in Xenopus; formally demonstrating that this important step in organ induction is conserved with other vertebrate species. Prolonged contact with the mesoderm and persistent FGF signaling through both MEK and PI3K over an extended period of time are required for liver and lung specification. Inhibition of FGF signaling results in reduced liver and lung development, with a modest expansion of the pancreas/duodenum progenitor domain. Hyper-activation of FGF signaling has the opposite effect expanding liver and lung gene expression and repressing pancreatic markers. We show that FGF signaling is cell autonomously required in the endoderm and that a dominant negative FGF receptor decreases the ability of ventral foregut progenitor cells to contribute to the lung and liver buds. CONCLUSIONS These results suggest that the liver and lungs are specified at progressively later times in development requiring mesoderm contact for different lengths of time. Our data suggest that this is achieved at least in part through prolonged FGF signaling. In addition to providing a foundation for further mechanistic studies on foregut organogenesis using the experimental advantages of the Xenopus system, these data have implications for the directed differentiation of stem cells into foregut lineages.
Collapse
Affiliation(s)
- Emily T Shifley
- Perinatal Institute, Divisions of Developmental Biology, University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|