1
|
Jutras-Dubé L, Henry A, François P. Modelling Time-Dependent Acquisition of Positional Information. Methods Mol Biol 2018; 1863:281-301. [PMID: 30324604 DOI: 10.1007/978-1-4939-8772-6_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Theoretical and computational modelling are crucial to understand dynamics of embryonic development. In this tutorial chapter, we describe two models of gene networks performing time-dependent acquisition of positional information under control of a dynamic morphogen: a toy-model of a bistable gene under control of a morphogen, allowing for the numerical computation of a simple Waddington's epigenetic landscape, and a recently published model of gap genes in Tribolium under control of multiple enhancers. We present detailed commented implementations of the models using python and jupyter notebooks.
Collapse
Affiliation(s)
- Laurent Jutras-Dubé
- McGill University, Ernest Rutherford Physics Building, 3600 rue University, H3A2T8, Montreal, QC, Canada
| | - Adrien Henry
- McGill University, Ernest Rutherford Physics Building, 3600 rue University, H3A2T8, Montreal, QC, Canada
| | - Paul François
- McGill University, Ernest Rutherford Physics Building, 3600 rue University, H3A2T8, Montreal, QC, Canada
| |
Collapse
|
2
|
Khamo JS, Krishnamurthy VV, Sharum SR, Mondal P, Zhang K. Applications of Optobiology in Intact Cells and Multicellular Organisms. J Mol Biol 2017; 429:2999-3017. [PMID: 28882542 DOI: 10.1016/j.jmb.2017.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
Temporal kinetics and spatial coordination of signal transduction in cells are vital for cell fate determination. Tools that allow for precise modulation of spatiotemporal regulation of intracellular signaling in intact cells and multicellular organisms remain limited. The emerging optobiological approaches use light to control protein-protein interaction in live cells and multicellular organisms. Optobiology empowers light-mediated control of diverse cellular and organismal functions such as neuronal activity, intracellular signaling, gene expression, cell proliferation, differentiation, migration, and apoptosis. In this review, we highlight recent developments in optobiology, focusing on new features of second-generation optobiological tools. We cover applications of optobiological approaches in the study of cellular and organismal functions, discuss current challenges, and present our outlook. Taking advantage of the high spatial and temporal resolution of light control, optobiology promises to provide new insights into the coordination of signaling circuits in intact cells and multicellular organisms.
Collapse
Affiliation(s)
- John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Savanna R Sharum
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Ubezio B, Blanco RA, Geudens I, Stanchi F, Mathivet T, Jones ML, Ragab A, Bentley K, Gerhardt H. Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion. eLife 2016; 5. [PMID: 27074663 PMCID: PMC4894757 DOI: 10.7554/elife.12167] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Formation of a regularly branched blood vessel network is crucial in development and physiology. Here we show that the expression of the Notch ligand Dll4 fluctuates in individual endothelial cells within sprouting vessels in the mouse retina in vivo and in correlation with dynamic cell movement in mouse embryonic stem cell-derived sprouting assays. We also find that sprout elongation and branching associates with a highly differential phase pattern of Dll4 between endothelial cells. Stimulation with pathologically high levels of Vegf, or overexpression of Dll4, leads to Notch dependent synchronization of Dll4 fluctuations within clusters, both in vitro and in vivo. Our results demonstrate that the Vegf-Dll4/Notch feedback system normally operates to generate heterogeneity between endothelial cells driving branching, whilst synchronization drives vessel expansion. We propose that this sensitive phase transition in the behaviour of the Vegf-Dll4/Notch feedback loop underlies the morphogen function of Vegfa in vascular patterning.
Collapse
Affiliation(s)
- Benedetta Ubezio
- Vascular Biology Laboratory, London Research Institute, London, United Kingdom.,Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Raquel Agudo Blanco
- Vascular Biology Laboratory, London Research Institute, London, United Kingdom.,Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Ilse Geudens
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium.,Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Fabio Stanchi
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium.,Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Thomas Mathivet
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium.,Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Martin L Jones
- Vascular Biology Laboratory, London Research Institute, London, United Kingdom.,Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Anan Ragab
- Vascular Biology Laboratory, London Research Institute, London, United Kingdom.,Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Katie Bentley
- Vascular Biology Laboratory, London Research Institute, London, United Kingdom.,Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Holger Gerhardt
- Vascular Biology Laboratory, London Research Institute, London, United Kingdom.,Lincoln's Inn Fields Laboratories, London, United Kingdom.,Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium.,Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, Katholieke Universiteit Leuven, Leuven, Belgium.,Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
4
|
Corrigan AM, Chubb JR. Regulation of transcriptional bursting by a naturally oscillating signal. Curr Biol 2014; 24:205-211. [PMID: 24388853 PMCID: PMC3928820 DOI: 10.1016/j.cub.2013.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/04/2013] [Accepted: 12/05/2013] [Indexed: 12/19/2022]
Abstract
Transcription is highly stochastic, occurring in irregular bursts. For temporal and spatial precision of gene expression, cells must somehow deal with this noisy behavior. To address how this is achieved, we investigated how transcriptional bursting is entrained by a naturally oscillating signal, by direct measurement of transcription together with signal dynamics in living cells. We identify a Dictyostelium gene showing rapid transcriptional oscillations with the same period as extracellular cAMP signaling waves. Bursting approaches antiphase to cAMP waves, with accelerating transcription cycles during differentiation. Although coupling between signal and transcription oscillations was clear at the population level, single-cell transcriptional bursts retained considerable heterogeneity, indicating that transcription is not governed solely by signaling frequency. Previous studies implied that burst heterogeneity reflects distinct chromatin states. Here we show that heterogeneity is determined by multiple intrinsic and extrinsic cues and is maintained by a transcriptional persistence. Unusually for a persistent transcriptional behavior, the lifetime was only 20 min, with rapid randomization of transcriptional state by the response to oscillatory signaling. Linking transcription to rapid signaling oscillations allows reduction of gene expression heterogeneity by temporal averaging, providing a mechanism to generate precision in cell choices during development.
Collapse
Affiliation(s)
- Adam M Corrigan
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jonathan R Chubb
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|