1
|
Komori H, Rastogi G, Bugay JP, Luo H, Lin S, Angers S, Smibert CA, Lipshitz HD, Lee CY. mRNA decay pre-complex assembly drives timely cell-state transitions during differentiation. Cell Rep 2025; 44:115138. [PMID: 39739530 PMCID: PMC11911916 DOI: 10.1016/j.celrep.2024.115138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/27/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
Complexes that control mRNA stability and translation promote timely cell-state transitions during differentiation by ensuring appropriate expression patterns of key developmental regulators. The Drosophila RNA-binding protein brain tumor (Brat) promotes the degradation of target transcripts during the maternal-to-zygotic transition in syncytial embryos and uncommitted intermediate neural progenitors (immature INPs). We identify ubiquitin-specific protease 5 (Usp5) as a candidate Brat interactor essential for the degradation of Brat target mRNAs. Usp5 promotes the formation of the Brat-deadenylase pre-complex in mitotic neural stem cells (neuroblasts) by facilitating Brat interactions with the scaffolding components of deadenylase complexes. The adaptor protein Miranda binds the RNA-binding domain of Brat, limiting its ability to bind target mRNAs in mitotic neuroblasts. Cortical displacement of Miranda activates Brat-deadenylase complex activity in immature INPs. We propose that the assembly of an enzymatically inactive and RNA-binding-deficient pre-complex poises mRNA degradation machineries for rapid activation, driving timely developmental transitions.
Collapse
Affiliation(s)
- Hideyuki Komori
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Geeta Rastogi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Paul Bugay
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sichun Lin
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Division of Genetic Medicine, Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Das S, Hegde S, Wagh N, Sudhakaran J, Roy AE, Deshpande G, Ratnaparkhi GS. Caspar specifies primordial germ cell count and identity in Drosophila melanogaster. eLife 2024; 13:RP98584. [PMID: 39671304 PMCID: PMC11643641 DOI: 10.7554/elife.98584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024] Open
Abstract
Repurposing of pleiotropic factors during execution of diverse cellular processes has emerged as a regulatory paradigm. Embryonic development in metazoans is controlled by maternal factors deposited in the egg during oogenesis. Here, we explore maternal role(s) of Caspar (Casp), the Drosophila orthologue of human Fas-associated factor-1 (FAF1) originally implicated in host-defense as a negative regulator of NF-κB signaling. Maternal loss of either Casp or it's protein partner, transitional endoplasmic reticulum 94 (TER94) leads to partial embryonic lethality correlated with aberrant centrosome behavior, cytoskeletal abnormalities, and defective gastrulation. Although ubiquitously distributed, both proteins are enriched in the primordial germ cells (PGCs), and in keeping with the centrosome problems, mutant embryos display a significant reduction in the PGC count. Moreover, the total number of pole buds is directly proportional to the level of Casp. Consistently, it's 'loss' and 'gain' results in respective reduction and increase in the Oskar protein levels, the master determinant of PGC fate. To elucidate this regulatory loop, we analyzed several known components of mid-blastula transition and identify the translational repressor Smaug, a zygotic regulator of germ cell specification, as a potential critical target. We present a detailed structure-function analysis of Casp aimed at understanding its novel involvement during PGC development.
Collapse
Affiliation(s)
- Subhradip Das
- Department of Biology, Indian Institute of Science Education & ResearchPuneIndia
| | - Sushmitha Hegde
- Department of Biology, Indian Institute of Science Education & ResearchPuneIndia
| | - Neel Wagh
- Department of Biology, Indian Institute of Science Education & ResearchPuneIndia
| | - Jyothish Sudhakaran
- Department of Biology, Indian Institute of Science Education & ResearchPuneIndia
| | - Adheena Elsa Roy
- Department of Biology, Indian Institute of Science Education & ResearchPuneIndia
| | - Girish Deshpande
- Department of Biology, Indian Institute of Science Education & ResearchPuneIndia
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & ResearchPuneIndia
| |
Collapse
|
3
|
Pamula MC, Lehmann R. How germ granules promote germ cell fate. Nat Rev Genet 2024; 25:803-821. [PMID: 38890558 DOI: 10.1038/s41576-024-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Germ cells are the only cells in the body capable of giving rise to a new organism, and this totipotency hinges on their ability to assemble membraneless germ granules. These specialized RNA and protein complexes are hallmarks of germ cells throughout their life cycle: as embryonic germ granules in late oocytes and zygotes, Balbiani bodies in immature oocytes, and nuage in maturing gametes. Decades of developmental, genetic and biochemical studies have identified protein and RNA constituents unique to germ granules and have implicated these in germ cell identity, genome integrity and gamete differentiation. Now, emerging research is defining germ granules as biomolecular condensates that achieve high molecular concentrations by phase separation, and it is assigning distinct roles to germ granules during different stages of germline development. This organization of the germ cell cytoplasm into cellular subcompartments seems to be critical not only for the flawless continuity through the germline life cycle within the developing organism but also for the success of the next generation.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Komori H, Rastogi G, Bugay JP, Luo H, Lin S, Angers S, Smibert CA, Lipshitz HD, Lee CY. Post-transcriptional regulatory pre-complex assembly drives timely cell-state transitions during differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591706. [PMID: 38746105 PMCID: PMC11092521 DOI: 10.1101/2024.04.29.591706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Complexes that control mRNA stability and translation promote timely cell-state transitions during differentiation by ensuring appropriate expression patterns of key developmental regulators. The Drosophila RNA-binding protein Brain tumor (Brat) promotes degradation of target transcripts during the maternal-to-zygotic transition in syncytial embryos and in uncommitted intermediate neural progenitors (immature INPs). We identified Ubiquitin-specific protease 5 (Usp5) as a Brat interactor essential for the degradation of Brat target mRNAs in both cell types. Usp5 promotes Brat-dedadenylase pre-complex assembly in mitotic neural stem cells (neuroblasts) by bridging Brat and the scaffolding components of deadenylase complexes lacking their catalytic subunits. The adaptor protein Miranda binds the RNA-binding domain of Brat, limiting its ability to bind target mRNAs in mitotic neuroblasts. Cortical displacement of Miranda activates Brat-mediated mRNA decay in immature INPs. We propose that the assembly of an enzymatically inactive and RNA-binding-deficient pre-complex poises mRNA degradation machineries for rapid activation driving timely developmental transitions.
Collapse
|
5
|
Tokamov SA, Buiter S, Ullyot A, Scepanovic G, Williams AM, Fernandez-Gonzalez R, Horne-Badovinac S, Fehon RG. Cortical tension promotes Kibra degradation via Par-1. Mol Biol Cell 2024; 35:ar2. [PMID: 37903240 PMCID: PMC10881160 DOI: 10.1091/mbc.e23-06-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
The Hippo pathway is an evolutionarily conserved regulator of tissue growth. Multiple Hippo signaling components are regulated via proteolytic degradation. However, how these degradation mechanisms are themselves modulated remains unexplored. Kibra is a key upstream pathway activator that promotes its own ubiquitin-mediated degradation upon assembling a Hippo signaling complex. Here, we demonstrate that Hippo complex-dependent Kibra degradation is modulated by cortical tension. Using classical genetic, osmotic, and pharmacological manipulations of myosin activity and cortical tension, we show that increasing cortical tension leads to Kibra degradation, whereas decreasing cortical tension increases Kibra abundance. Our study also implicates Par-1 in regulating Kib abundance downstream of cortical tension. We demonstrate that Par-1 promotes ubiquitin-mediated Kib degradation in a Hippo complex-dependent manner and is required for tension-induced Kib degradation. Collectively, our results reveal a previously unknown molecular mechanism by which cortical tension affects Hippo signaling and provide novel insights into the role of mechanical forces in growth control.
Collapse
Affiliation(s)
- Sherzod A. Tokamov
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Stephan Buiter
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Anne Ullyot
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Audrey Miller Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering and Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
6
|
Kubíková J, Ubartaitė G, Metz J, Jeske M. Structural basis for binding of Drosophila Smaug to the GPCR Smoothened and to the germline inducer Oskar. Proc Natl Acad Sci U S A 2023; 120:e2304385120. [PMID: 37523566 PMCID: PMC10410706 DOI: 10.1073/pnas.2304385120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
Drosophila Smaug and its orthologs comprise a family of mRNA repressor proteins that exhibit various functions during animal development. Smaug proteins contain a characteristic RNA-binding sterile-α motif (SAM) domain and a conserved but uncharacterized N-terminal domain (NTD). Here, we resolved the crystal structure of the NTD of the human SAM domain-containing protein 4A (SAMD4A, a.k.a. Smaug1) to 1.6 Å resolution, which revealed its composition of a homodimerization D subdomain and a subdomain with similarity to a pseudo-HEAT-repeat analogous topology (PHAT) domain. Furthermore, we show that Drosophila Smaug directly interacts with the Drosophila germline inducer Oskar and with the Hedgehog signaling transducer Smoothened through its NTD. We determined the crystal structure of the NTD of Smaug in complex with a Smoothened α-helical peptide to 2.0 Å resolution. The peptide binds within a groove that is formed by both the D and PHAT subdomains. Structural modeling supported by experimental data suggested that an α-helix within the disordered region of Oskar binds to the NTD of Smaug in a mode similar to Smoothened. Together, our data uncover the NTD of Smaug as a peptide-binding domain.
Collapse
Affiliation(s)
- Jana Kubíková
- Biochemistry Center, Heidelberg University, Heidelberg69120, Germany
| | | | - Jutta Metz
- Biochemistry Center, Heidelberg University, Heidelberg69120, Germany
| | - Mandy Jeske
- Biochemistry Center, Heidelberg University, Heidelberg69120, Germany
| |
Collapse
|
7
|
Siddiqui NU, Karaiskakis A, Goldman AL, Eagle WV, Smibert CA, Gavis ER, Lipshitz HD. Smaug regulates germ plasm synthesis and primordial germ cell number in Drosophila embryos by repressing the oskar and bruno 1 mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530189. [PMID: 36909513 PMCID: PMC10002672 DOI: 10.1101/2023.02.27.530189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
During Drosophila oogenesis, the Oskar (OSK) RNA-binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here we identify the mechanisms that regulate the osk mRNA in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk mRNA itself as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNAs results in ectopic translation of these transcripts in the germ plasm and excess PGCs. SMG therefore triggers a post-transcriptional regulatory pathway that attenuates germ plasm synthesis in embryos, thus modulating the number of PGCs.
Collapse
Affiliation(s)
- Najeeb U. Siddiqui
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Program in Developmental & Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Angelo Karaiskakis
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Aaron L. Goldman
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Program in Developmental & Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Whitby V.I. Eagle
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Craig A. Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
8
|
Yamada H, Nishida KM, Iwasaki YW, Isota Y, Negishi L, Siomi MC. Siwi cooperates with Par-1 kinase to resolve the autoinhibitory effect of Papi for Siwi-piRISC biogenesis. Nat Commun 2022; 13:1518. [PMID: 35314687 PMCID: PMC8938449 DOI: 10.1038/s41467-022-29193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
Bombyx Papi acts as a scaffold for Siwi-piRISC biogenesis on the mitochondrial surface. Papi binds first to Siwi via the Tudor domain and subsequently to piRNA precursors loaded onto Siwi via the K-homology (KH) domains. This second action depends on phosphorylation of Papi. However, the underlying mechanism remains unknown. Here, we show that Siwi targets Par-1 kinase to Papi to phosphorylate Ser547 in the auxiliary domain. This modification enhances the ability of Papi to bind Siwi-bound piRNA precursors via the KH domains. The Papi S547A mutant bound to Siwi, but evaded phosphorylation by Par-1, abrogating Siwi-piRISC biogenesis. A Papi mutant that lacked the Tudor and auxiliary domains escaped coordinated regulation by Siwi and Par-1 and bound RNAs autonomously. Another Papi mutant that lacked the auxiliary domain bound Siwi but did not bind piRNA precursors. A sophisticated mechanism by which Siwi cooperates with Par-1 kinase to promote Siwi-piRISC biogenesis was uncovered. Siwi-piRISC protects the germline genome from DNA damage caused by selfish movement of transposons by suppressing their expression. Here, the authors show how molecularly Papi, which plays an important role in the production of Siwi-piRISC, cooperates with Par-1 kinase to ensure the accumulation of Siwi-piRISC in germ cells.
Collapse
|
9
|
Cao WX, Kabelitz S, Gupta M, Yeung E, Lin S, Rammelt C, Ihling C, Pekovic F, Low TCH, Siddiqui NU, Cheng MHK, Angers S, Smibert CA, Wühr M, Wahle E, Lipshitz HD. Precise Temporal Regulation of Post-transcriptional Repressors Is Required for an Orderly Drosophila Maternal-to-Zygotic Transition. Cell Rep 2021; 31:107783. [PMID: 32579915 PMCID: PMC7372737 DOI: 10.1016/j.celrep.2020.107783] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
In animal embryos, the maternal-to-zygotic transition (MZT) hands developmental control from maternal to zygotic gene products. We show that the maternal proteome represents more than half of the protein-coding capacity of Drosophila melanogaster’s genome, and that 2% of this proteome is rapidly degraded during the MZT. Cleared proteins include the post-transcriptional repressors Cup, Trailer hitch (TRAL), Maternal expression at 31B (ME31B), and Smaug (SMG). Although the ubiquitin-proteasome system is necessary for clearance of these repressors, distinct E3 ligase complexes target them: the C-terminal to Lis1 Homology (CTLH) complex targets Cup, TRAL, and ME31B for degradation early in the MZT and the Skp/Cullin/F-box-containing (SCF) complex targets SMG at the end of the MZT. Deleting the C-terminal 233 amino acids of SMG abrogates F-box protein interaction and confers immunity to degradation. Persistent SMG downregulates zygotic re-expression of mRNAs whose maternal contribution is degraded by SMG. Thus, clearance of SMG permits an orderly MZT. Cao et al. show that 2% of the proteome is degraded in early Drosophila embryos, including a repressive ribonucleoprotein complex. Two E3 ubiquitin ligases separately act on distinct components of this complex to phase their clearance. Failure to degrade a key component, the Smaug RNA-binding protein, disrupts an orderly maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Sarah Kabelitz
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany
| | - Meera Gupta
- Department of Molecular Biology and the Lewis-Sigler Institute, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Eyan Yeung
- Department of Molecular Biology and the Lewis-Sigler Institute, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Sichun Lin
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany
| | - Christian Ihling
- Institute of Pharmacy and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany
| | - Filip Pekovic
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany
| | - Timothy C H Low
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Najeeb U Siddiqui
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Matthew H K Cheng
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Martin Wühr
- Department of Molecular Biology and the Lewis-Sigler Institute, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany.
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
10
|
Tokamov SA, Su T, Ullyot A, Fehon RG. Negative feedback couples Hippo pathway activation with Kibra degradation independent of Yorkie-mediated transcription. eLife 2021; 10:62326. [PMID: 33555257 PMCID: PMC7895526 DOI: 10.7554/elife.62326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
The Hippo (Hpo) pathway regulates tissue growth in many animals. Multiple upstream components promote Hpo pathway activity, but the organization of these different inputs, the degree of crosstalk between them, and whether they are regulated in a distinct manner is not well understood. Kibra (Kib) activates the Hpo pathway by recruiting the core Hpo kinase cassette to the apical cortex. Here, we show that the Hpo pathway downregulates Drosophila Kib levels independently of Yorkie-mediated transcription. We find that Hpo signaling complex formation promotes Kib degradation via SCFSlimb-mediated ubiquitination, that this effect requires Merlin, Salvador, Hpo, and Warts, and that this mechanism functions independently of other upstream Hpo pathway activators. Moreover, Kib degradation appears patterned by differences in mechanical tension across the wing. We propose that Kib degradation mediated by Hpo pathway components and regulated by cytoskeletal tension serves to control Kib-driven Hpo pathway activation and ensure optimally scaled and patterned tissue growth.
Collapse
Affiliation(s)
- Sherzod A Tokamov
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, United States
| | - Ting Su
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Anne Ullyot
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
11
|
Kulkarni A, Lopez DH, Extavour CG. Shared Cell Biological Functions May Underlie Pleiotropy of Molecular Interactions in the Germ Lines and Nervous Systems of Animals. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
12
|
Leptin increases mitochondrial OPA1 via GSK3-mediated OMA1 ubiquitination to enhance therapeutic effects of mesenchymal stem cell transplantation. Cell Death Dis 2018; 9:556. [PMID: 29748581 PMCID: PMC5945599 DOI: 10.1038/s41419-018-0579-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/16/2018] [Accepted: 03/30/2018] [Indexed: 01/15/2023]
Abstract
Accumulating evidence revealed that mesenchymal stem cells (MSCs) confer cardioprotection against myocardial infarction (MI). However, the poor survival and engraftment rate of the transplanted cells limited their therapeutic efficacy in the heart. The enhanced leptin production associated with hypoxia preconditioning contributed to the improved MSCs survival. Mitochondrial integrity determines the cellular fate. Thus, we aimed to investigate whether leptin can enhance mitochondrial integrity of human MSCs (hMSCs) to protect against various stress. In vivo, transplantation of leptin-overexpressing hMSCs into the infarcted heart resulted in improved cell viability, leading to enhanced angiogenesis and cardiac function. In vitro, pretreatment of hMSCs with recombinant leptin (hMSCs-Leppre) displayed improved cell survival against severe ischemic condition (glucose and serum deprivation under hypoxia), which was associated with increased mitochondrial fusion. Subsequently, Optic atrophy 1 (OPA1), a mitochondrial inner membrane protein that regulates fusion and cristae structure, was significantly elevated in the hMSCs-Leppre group, and the protection of leptin was abrogated by targeting OPA1 with a selective siRNA. Furthermore, OMA1, a mitochondrial protease that cleaves OPA1, decreased in a leptin-dependent manner. Pretreatment of cells with an inhibitor of the proteasome (MG132), prevented leptin-induced OMA1 degradation, implicating the ubiquitination/proteasome system as a part of the protective leptin pathway. In addition, GSK3 inhibitor (SB216763) was also involved in the degradation of OMA1. In conclusion, in the hostile microenvironment caused by MI, (a) leptin can maintain the mitochondrial integrity and prolong the survival of hMSCs; (b) leptin-mediated mitochondrial integrity requires phosphorylation of GSK3 as a prerequisite for ubiquitination-depended degradation of OMA1 and attenuation of long-OPA1 cleavage. Thus, leptin targeting the GSK3/OMA1/OPA1 signaling pathway can optimize hMSCs therapy for cardiovascular diseases such as MI.
Collapse
|
13
|
Bilinski SM, Jaglarz MK, Tworzydlo W. The Pole (Germ) Plasm in Insect Oocytes. Results Probl Cell Differ 2017; 63:103-126. [PMID: 28779315 DOI: 10.1007/978-3-319-60855-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Animal germline cells are specified either through zygotic induction or cytoplasmic inheritance. Zygotic induction takes place in mid- or late embryogenesis and requires cell-to-cell signaling leading to the acquisition of germline fate de novo. In contrast, cytoplasmic inheritance involves formation of a specific, asymmetrically localized oocyte region, termed the germ (pole) plasm. This region contains maternally provided germline determinants (mRNAs, proteins) that are capable of inducing germline fate in a subset of embryonic cells. Recent data indicate that among insects, the zygotic induction represents an ancestral condition, while the cytoplasmic inheritance evolved at the base of Holometabola or in the last common ancestor of Holometabola and its sister taxon, Paraneoptera.In this chapter, we first describe subsequent stages of morphogenesis of the pole plasm and polar granules in the model organism, Drosophila melanogaster. Then, we present an overview of morphology and cytoarchitecture of the pole plasm in various holometabolan and paraneopteran insect species. Finally, we focus on phylogenetic hypotheses explaining the known distribution of two different strategies of germline specification among insects.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Mariusz K Jaglarz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
14
|
Abstract
PAR-1/MARK kinases are conserved serine/threonine kinases that are essential regulators of cell polarity. PAR-1/MARK kinases localize and function in opposition to the anterior PAR proteins to control the asymmetric distribution of factors in a wide variety polarized cells. In this review, we discuss the mechanisms that control the localization and activity of PAR-1/MARK kinases, including their antagonistic interactions with the anterior PAR proteins. We focus on the role PAR-1 plays in the asymmetric division of the Caenorhabditis elegans zygote, in the establishment of the anterior/posterior axis in the Drosophila oocyte and in the control of microtubule dynamics in mammalian neurons. In addition to conserved aspects of PAR-1 biology, we highlight the unique ways in which PAR-1 acts in these distinct cell types to orchestrate their polarization. Finally, we review the connections between disruptions in PAR-1/MARK function and Alzheimer's disease and cancer.
Collapse
Affiliation(s)
- Youjun Wu
- Dartmouth College, Hanover, NH, United States
| | | |
Collapse
|
15
|
Abstract
Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration.
Collapse
Affiliation(s)
- Florence Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, 10461, USA
| |
Collapse
|
16
|
Halstead JM, Lionnet T, Wilbertz JH, Wippich F, Ephrussi A, Singer RH, Chao JA. Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 2015; 347:1367-671. [PMID: 25792328 DOI: 10.1126/science.aaa3380] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Analysis of single molecules in living cells has provided quantitative insights into the kinetics of fundamental biological processes; however, the dynamics of messenger RNA (mRNA) translation have yet to be addressed. We have developed a fluorescence microscopy technique that reports on the first translation events of individual mRNA molecules. This allowed us to examine the spatiotemporal regulation of translation during normal growth and stress and during Drosophila oocyte development. We have shown that mRNAs are not translated in the nucleus but translate within minutes after export, that sequestration within P-bodies regulates translation, and that oskar mRNA is not translated until it reaches the posterior pole of the oocyte. This methodology provides a framework for studying initiation of protein synthesis on single mRNAs in living cells.
Collapse
Affiliation(s)
- James M Halstead
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Timothée Lionnet
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Transcription Imaging Consortium, Howard Hughes Medical Institute Janelia Farm Research Campus, Ashburn, VA 20147, USA
| | - Johannes H Wilbertz
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland. University of Basel, CH-4003 Basel, Switzerland
| | - Frank Wippich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Transcription Imaging Consortium, Howard Hughes Medical Institute Janelia Farm Research Campus, Ashburn, VA 20147, USA.
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland. Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
17
|
Lowe N, Rees JS, Roote J, Ryder E, Armean IM, Johnson G, Drummond E, Spriggs H, Drummond J, Magbanua JP, Naylor H, Sanson B, Bastock R, Huelsmann S, Trovisco V, Landgraf M, Knowles-Barley S, Armstrong JD, White-Cooper H, Hansen C, Phillips RG, Lilley KS, Russell S, St Johnston D. Analysis of the expression patterns, subcellular localisations and interaction partners of Drosophila proteins using a pigP protein trap library. Development 2014; 141:3994-4005. [PMID: 25294943 PMCID: PMC4197710 DOI: 10.1242/dev.111054] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/13/2014] [Indexed: 01/01/2023]
Abstract
Although we now have a wealth of information on the transcription patterns of all the genes in the Drosophila genome, much less is known about the properties of the encoded proteins. To provide information on the expression patterns and subcellular localisations of many proteins in parallel, we have performed a large-scale protein trap screen using a hybrid piggyBac vector carrying an artificial exon encoding yellow fluorescent protein (YFP) and protein affinity tags. From screening 41 million embryos, we recovered 616 verified independent YFP-positive lines representing protein traps in 374 genes, two-thirds of which had not been tagged in previous P element protein trap screens. Over 20 different research groups then characterized the expression patterns of the tagged proteins in a variety of tissues and at several developmental stages. In parallel, we purified many of the tagged proteins from embryos using the affinity tags and identified co-purifying proteins by mass spectrometry. The fly stocks are publicly available through the Kyoto Drosophila Genetics Resource Center. All our data are available via an open access database (Flannotator), which provides comprehensive information on the expression patterns, subcellular localisations and in vivo interaction partners of the trapped proteins. Our resource substantially increases the number of available protein traps in Drosophila and identifies new markers for cellular organelles and structures.
Collapse
Affiliation(s)
- Nick Lowe
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Johanna S Rees
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK The Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - John Roote
- The Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Ed Ryder
- The Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Irina M Armean
- The Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Glynnis Johnson
- The Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Emma Drummond
- The Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Helen Spriggs
- The Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Jenny Drummond
- The Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Jose P Magbanua
- The Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Huw Naylor
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Bénédicte Sanson
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Rebecca Bastock
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Sven Huelsmann
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Vitor Trovisco
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Matthias Landgraf
- The Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Seymour Knowles-Barley
- Institute for Adaptive and Neural Computation, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| | - J Douglas Armstrong
- Institute for Adaptive and Neural Computation, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| | - Helen White-Cooper
- Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Celia Hansen
- Department of Genetics, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, UK
| | - Roger G Phillips
- Centre for Advanced Microscopy, University of Sussex, School of Life Sciences, John Maynard Smith Building, Falmer, Brighton and Hove BN1 9QG, UK
| | - Kathryn S Lilley
- The Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Steven Russell
- The Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Daniel St Johnston
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
18
|
Skwarek LC, Windler SL, de Vreede G, Rogers GC, Bilder D. The F-box protein Slmb restricts the activity of aPKC to polarize epithelial cells. Development 2014; 141:2978-83. [PMID: 25053431 DOI: 10.1242/dev.109694] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Par-3/Par-6/aPKC complex is the primary determinant of apical polarity in epithelia across animal species, but how the activity of this complex is restricted to allow polarization of the basolateral domain is less well understood. In Drosophila, several multiprotein modules antagonize the Par complex through a variety of means. Here we identify a new mechanism involving regulated protein degradation. Strong mutations in supernumerary limbs (slmb), which encodes the substrate adaptor of an SCF-class E3 ubiquitin ligase, cause dramatic loss of polarity in imaginal discs accompanied by tumorous proliferation defects. Slmb function is required to restrain apical aPKC activity in a manner that is independent of endolysosomal trafficking and parallel to the Scribble module of junctional scaffolding proteins. The involvement of the Slmb E3 ligase in epithelial polarity, specifically limiting Par complex activity to distinguish the basolateral domain, points to parallels with polarization of the C. elegans zygote.
Collapse
Affiliation(s)
- Lara C Skwarek
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| | - Sarah L Windler
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| | - Geert de Vreede
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| |
Collapse
|
19
|
Morais-de-Sá E, Mukherjee A, Lowe N, St Johnston D. Slmb antagonises the aPKC/Par-6 complex to control oocyte and epithelial polarity. Development 2014; 141:2984-92. [PMID: 25053432 PMCID: PMC4197659 DOI: 10.1242/dev.109827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Drosophila anterior-posterior axis is specified when the posterior follicle cells signal to polarise the oocyte, leading to the anterior/lateral localisation of the Par-6/aPKC complex and the posterior recruitment of Par-1, which induces a microtubule reorganisation that localises bicoid and oskar mRNAs. Here we show that oocyte polarity requires Slmb, the substrate specificity subunit of the SCF E3 ubiquitin ligase that targets proteins for degradation. The Par-6/aPKC complex is ectopically localised to the posterior of slmb mutant oocytes, and Par-1 and oskar mRNA are mislocalised. Slmb appears to play a related role in epithelial follicle cells, as large slmb mutant clones disrupt epithelial organisation, whereas small clones show an expansion of the apical domain, with increased accumulation of apical polarity factors at the apical cortex. The levels of aPKC and Par-6 are significantly increased in slmb mutants, whereas Baz is slightly reduced. Thus, Slmb may induce the polarisation of the anterior-posterior axis of the oocyte by targeting the Par-6/aPKC complex for degradation at the oocyte posterior. Consistent with this, overexpression of the aPKC antagonist Lgl strongly rescues the polarity defects of slmb mutant germline clones. The role of Slmb in oocyte polarity raises an intriguing parallel with C. elegans axis formation, in which PAR-2 excludes the anterior PAR complex from the posterior cortex to induce polarity, but its function can be substituted by overexpressing Lgl.
Collapse
Affiliation(s)
- Eurico Morais-de-Sá
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Avik Mukherjee
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Nick Lowe
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
20
|
Strikoudis A, Guillamot M, Aifantis I. Regulation of stem cell function by protein ubiquitylation. EMBO Rep 2014; 15:365-82. [PMID: 24652853 DOI: 10.1002/embr.201338373] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue homeostasis depends largely on the ability to replenish impaired or aged cells. Thus, tissue-resident stem cells need to provide functional progeny throughout the lifetime of an organism. Significant work in the past years has characterized how stem cells integrate signals from their environment to shape regulatory transcriptional networks and chromatin-regulating factors that control stem cell differentiation or maintenance. There is increasing interest in how post-translational modifications, and specifically ubiquitylation, control these crucial decisions. Ubiquitylation modulates the stability and function of important factors that regulate key processes in stem cell behavior. In this review, we analyze the role of ubiquitylation in embryonic stem cells and different adult multipotent stem cell systems and discuss the underlying mechanisms that control the balance between quiescence, self-renewal, and differentiation. We also discuss deregulated processes of ubiquitin-mediated protein degradation that lead to the development of tumor-initiating cells.
Collapse
Affiliation(s)
- Alexandros Strikoudis
- Howard Hughes Medical Institute New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|